Remark on locally constant self-similar processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 88-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $X=\{X(t),\ t\in\mathbb R_+\}$ be a self-similar process with index $\alpha>0$. We show that if $X$ is locally constant, and if $\mathbf P\{X(1)=0\}=0$, then the law of $X(t)$ is absolutely continuous. The applications of this result to homogeneous functionals of a multi-dimensional fractional Brownian motion are discussed.
@article{ZNSL_2011_396_a4,
     author = {Yu. A. Davydov},
     title = {Remark on locally constant self-similar processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--92},
     year = {2011},
     volume = {396},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a4/}
}
TY  - JOUR
AU  - Yu. A. Davydov
TI  - Remark on locally constant self-similar processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 88
EP  - 92
VL  - 396
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a4/
LA  - ru
ID  - ZNSL_2011_396_a4
ER  - 
%0 Journal Article
%A Yu. A. Davydov
%T Remark on locally constant self-similar processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 88-92
%V 396
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a4/
%G ru
%F ZNSL_2011_396_a4
Yu. A. Davydov. Remark on locally constant self-similar processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 88-92. http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a4/

[1] Yu. Davydov, M. Lifshits, N. Smorodina, Local properties of distributions of stochastic functionals, AMS, 1998 | MR | Zbl

[2] Yu. Davydov, “On convex hull of $d$-dimensional fractional Brownian motion”, Statist. Probab. Letters, 82 (2012), 37–39 | DOI | MR | Zbl

[3] Yu. A. Davydov, “Ob absolyutnoi nepreryvnosti obrazov mer”, Zap. nauchn. semin. POMI, 142, 1985, 48–54 | MR | Zbl

[4] S. N. Evans, “On the Hausdorff dimension of Brownian cone points”, Math. Proc. Cambridge Philos. Soc., 98 (1985), 343–353 | DOI | MR | Zbl