Remark on locally constant self-similar processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 88-92

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X=\{X(t),\ t\in\mathbb R_+\}$ be a self-similar process with index $\alpha>0$. We show that if $X$ is locally constant, and if $\mathbf P\{X(1)=0\}=0$, then the law of $X(t)$ is absolutely continuous. The applications of this result to homogeneous functionals of a multi-dimensional fractional Brownian motion are discussed.
@article{ZNSL_2011_396_a4,
     author = {Yu. A. Davydov},
     title = {Remark on locally constant self-similar processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--92},
     publisher = {mathdoc},
     volume = {396},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a4/}
}
TY  - JOUR
AU  - Yu. A. Davydov
TI  - Remark on locally constant self-similar processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 88
EP  - 92
VL  - 396
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a4/
LA  - ru
ID  - ZNSL_2011_396_a4
ER  - 
%0 Journal Article
%A Yu. A. Davydov
%T Remark on locally constant self-similar processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 88-92
%V 396
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a4/
%G ru
%F ZNSL_2011_396_a4
Yu. A. Davydov. Remark on locally constant self-similar processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 88-92. http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a4/