Remark on locally constant self-similar processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 88-92
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X=\{X(t),\ t\in\mathbb R_+\}$ be a self-similar process with index $\alpha>0$. We show that if $X$ is locally constant, and if $\mathbf P\{X(1)=0\}=0$, then the law of $X(t)$ is absolutely continuous. The applications of this result to homogeneous functionals of a multi-dimensional fractional Brownian motion are discussed.
@article{ZNSL_2011_396_a4,
author = {Yu. A. Davydov},
title = {Remark on locally constant self-similar processes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {88--92},
year = {2011},
volume = {396},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a4/}
}
Yu. A. Davydov. Remark on locally constant self-similar processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 88-92. http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a4/
[1] Yu. Davydov, M. Lifshits, N. Smorodina, Local properties of distributions of stochastic functionals, AMS, 1998 | MR | Zbl
[2] Yu. Davydov, “On convex hull of $d$-dimensional fractional Brownian motion”, Statist. Probab. Letters, 82 (2012), 37–39 | DOI | MR | Zbl
[3] Yu. A. Davydov, “Ob absolyutnoi nepreryvnosti obrazov mer”, Zap. nauchn. semin. POMI, 142, 1985, 48–54 | MR | Zbl
[4] S. N. Evans, “On the Hausdorff dimension of Brownian cone points”, Math. Proc. Cambridge Philos. Soc., 98 (1985), 343–353 | DOI | MR | Zbl