Limit theorems for small deviation probabilities of some iterated stochastic processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 218-232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We derive logarithmic asymptotics for probabilities of small deviations for some iterated processes. We show that under appropriate conditions, these asymptotics are the same as those of the processes which generate the iterated processes. When these conditions do not hold, the asymptotics of small deviations for iterated processes are quite different. We apply our results to the iterated processes generated by the compound Cox processes and the compound renewal processes.
@article{ZNSL_2011_396_a15,
     author = {A. N. Frolov},
     title = {Limit theorems for small deviation probabilities of some iterated stochastic processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {218--232},
     year = {2011},
     volume = {396},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a15/}
}
TY  - JOUR
AU  - A. N. Frolov
TI  - Limit theorems for small deviation probabilities of some iterated stochastic processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 218
EP  - 232
VL  - 396
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a15/
LA  - ru
ID  - ZNSL_2011_396_a15
ER  - 
%0 Journal Article
%A A. N. Frolov
%T Limit theorems for small deviation probabilities of some iterated stochastic processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 218-232
%V 396
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a15/
%G ru
%F ZNSL_2011_396_a15
A. N. Frolov. Limit theorems for small deviation probabilities of some iterated stochastic processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 218-232. http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a15/

[1] A. A. Mogulskii, “Malye ukloneniya v prostranstve traektorii”, Teoriya veroyatn. i ee primen., 19:4 (1974), 755–765 | MR | Zbl

[2] A. A. Borovkov, A. A. Mogulskii, “O veroyatnostyakh malykh uklonenii dlya sluchainykh protsessov”, Trudy Inst. matem. SO AN SSSR, 13, 1989, 147–168 | MR | Zbl

[3] M. Ledoux, “Isoperimetry and Gaussian analysis”, Lectures on Probability Theory and Statistics, Lect. Notes Math., 1648, Springer-Verlag, Berlin, 1996, 165–294 | DOI | MR | Zbl

[4] W. V. Li, Q.-M. Shao, “Gaussian processes: inequalities, small ball probabilities and applications”, Stochastic Processes: Theory and Methods, Handbook of Statistics, 19, eds. C. R. Rao, D. Shanbhag, North-Holland, Amsterdam, 2001, 533–597 | DOI | MR | Zbl

[5] M. A. Lifshits, “Asymptotic behavior of small ball probabilities”, Proceedings of the Seventh Vilnius Conference on Probability Theory and Mathematical Statistics, ed. B. Grigelionis, VSP/TEV, Vilnius, 1999, 453–468

[6] M. A. Lifshits, Bibliography of small deviation probabilities, 2010 http://www.proba.jussieu.fr/pageperso/smalldev/biblio.pdf

[7] A. N. Frolov, “O veroyatnostyakh malykh uklonenii obobschennykh protsessov Koksa”, Zap. nauchn. semin. POMI, 339, 2006, 163–175 | MR | Zbl

[8] A. I. Martikainen, A. N. Frolov, I. Shtainebakh, “O veroyatnostyakh malykh uklonenii obobschennykh protsessov vosstanovleniya”, Teoriya veroyatn. i ee primen., 52:2 (2007), 366–375 | DOI | MR | Zbl

[9] F. Aurzada, M. Lifshits, “On the small deviation problem for some iterated processes”, Electr. J. Probab., 14 (2009), 1992–2010 | MR | Zbl

[10] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1967 | Zbl