Estumation of density on indirect observation
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 204-212
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper it is investigated the accuracy of the estimating of the unknown density in the $L_1$-space on indirect observation. We suggest a simple nonparametric estimator $\widehat f_n$ for unknown density $f$ and under some appropriate conditions prove the consistency of this estimator.
@article{ZNSL_2011_396_a13,
author = {V. N. Solev},
title = {Estumation of density on indirect observation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {204--212},
year = {2011},
volume = {396},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a13/}
}
V. N. Solev. Estumation of density on indirect observation. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 204-212. http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a13/
[1] P. Massart, “The tight constant in the Dvoretzky–Kiefer–Wolfowitz inequality”, Ann. Probab., 18 (1990), 1269–1283 | DOI | MR | Zbl
[2] C. Huber-Carol, F. Vonta, “Frailty models for arbitrarily censored and truncated data”, Lifetime Data Analysis, 10 (2004), 369–388 | DOI | MR | Zbl
[3] C. Huber-Carol, V. Solev, F. Vonta, “Estmation of density for arbitrarily censored and truncated data”, Probability, Statistics, and Modelling in Public Healt, Kluwer Acad. Publ., eds. M. S. Nikulin, D. Commenges, C. Huber-Carol, Springer, New York, 2006, 246–265 | MR
[4] B. W. Turnbull, “The empirical distribution function with arbitrary grouped, censored and truncated data”, J. Royal Statist. Soc., 38 (1976), 290–295 | MR | Zbl