Small deviation probabilities for sums of independent positive random variables, whose density has a power decay at zero
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 195-203
Cet article a éte moissonné depuis la source Math-Net.Ru
In the note small deviation probabilities of sum of i.i.d. positive random variables are studied, whose density has a power decay at zero.
@article{ZNSL_2011_396_a12,
author = {L. V. Rozovsky},
title = {Small deviation probabilities for sums of independent positive random variables, whose density has a~power decay at zero},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {195--203},
year = {2011},
volume = {396},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a12/}
}
TY - JOUR AU - L. V. Rozovsky TI - Small deviation probabilities for sums of independent positive random variables, whose density has a power decay at zero JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 195 EP - 203 VL - 396 UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a12/ LA - ru ID - ZNSL_2011_396_a12 ER -
%0 Journal Article %A L. V. Rozovsky %T Small deviation probabilities for sums of independent positive random variables, whose density has a power decay at zero %J Zapiski Nauchnykh Seminarov POMI %D 2011 %P 195-203 %V 396 %U http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a12/ %G ru %F ZNSL_2011_396_a12
L. V. Rozovsky. Small deviation probabilities for sums of independent positive random variables, whose density has a power decay at zero. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 195-203. http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a12/
[1] L. V. Rozovskii, “Veroyatnosti malykh uklonenii dlya odnogo klassa raspredelenii so stepennym ubyvaniem v nule”, Zap. nauchn. semin. POMI, 328, 2005, 182–190 | MR
[2] L. V. Rozovskii, “O sverkhbolshikh ukloneniyakh summy nezavisimykh sluchainykh velichin s obschim absolyutno nepreryvnym raspredeleniem, udovletvoryayuschim usloviyu Kramera”, Teoriya veroyatn. i ee primen., 48:1 (2003), 78–103 | DOI | MR | Zbl
[3] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 416 pp. | MR