Small deviation probabilities for sums of independent positive random variables, whose density has a power decay at zero
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 195-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the note small deviation probabilities of sum of i.i.d. positive random variables are studied, whose density has a power decay at zero.
@article{ZNSL_2011_396_a12,
     author = {L. V. Rozovsky},
     title = {Small deviation probabilities for sums of independent positive random variables, whose density has a~power decay at zero},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {195--203},
     year = {2011},
     volume = {396},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a12/}
}
TY  - JOUR
AU  - L. V. Rozovsky
TI  - Small deviation probabilities for sums of independent positive random variables, whose density has a power decay at zero
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 195
EP  - 203
VL  - 396
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a12/
LA  - ru
ID  - ZNSL_2011_396_a12
ER  - 
%0 Journal Article
%A L. V. Rozovsky
%T Small deviation probabilities for sums of independent positive random variables, whose density has a power decay at zero
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 195-203
%V 396
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a12/
%G ru
%F ZNSL_2011_396_a12
L. V. Rozovsky. Small deviation probabilities for sums of independent positive random variables, whose density has a power decay at zero. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 195-203. http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a12/

[1] L. V. Rozovskii, “Veroyatnosti malykh uklonenii dlya odnogo klassa raspredelenii so stepennym ubyvaniem v nule”, Zap. nauchn. semin. POMI, 328, 2005, 182–190 | MR

[2] L. V. Rozovskii, “O sverkhbolshikh ukloneniyakh summy nezavisimykh sluchainykh velichin s obschim absolyutno nepreryvnym raspredeleniem, udovletvoryayuschim usloviyu Kramera”, Teoriya veroyatn. i ee primen., 48:1 (2003), 78–103 | DOI | MR | Zbl

[3] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 416 pp. | MR