A theorem on the strong law of large numbers for a sequence of nonnegative random variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 172-174
Cet article a éte moissonné depuis la source Math-Net.Ru
New sufficient conditions are found for the applicability of the strong law of large numbers to a sequence of dependent nonnegative random variables.
@article{ZNSL_2011_396_a10,
author = {V. V. Petrov},
title = {A theorem on the strong law of large numbers for a~sequence of nonnegative random variables},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {172--174},
year = {2011},
volume = {396},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a10/}
}
V. V. Petrov. A theorem on the strong law of large numbers for a sequence of nonnegative random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 172-174. http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a10/
[1] V. V. Petrov, “K usilennomu zakonu bolshikh chisel dlya posledovatelnosti neotritsatelnykh sluchainykh velichin”, Zap. nauchn. semin. POMI, 384, 2010, 182–184 | MR
[2] V. V. Petrov, “Ob usilennom zakone bolshikh chisel dlya posledovatelnosti neotritsatelnykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 53:2 (2008), 379–382 | DOI | Zbl
[3] A. Dvoretzky, “On the strong stability of a sequence of events”, Ann. Math. Statist., 20 (1949), 296–299 | DOI | MR | Zbl