A theorem on the strong law of large numbers for a sequence of nonnegative random variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 172-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

New sufficient conditions are found for the applicability of the strong law of large numbers to a sequence of dependent nonnegative random variables.
@article{ZNSL_2011_396_a10,
     author = {V. V. Petrov},
     title = {A theorem on the strong law of large numbers for a~sequence of nonnegative random variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {172--174},
     year = {2011},
     volume = {396},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a10/}
}
TY  - JOUR
AU  - V. V. Petrov
TI  - A theorem on the strong law of large numbers for a sequence of nonnegative random variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 172
EP  - 174
VL  - 396
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a10/
LA  - ru
ID  - ZNSL_2011_396_a10
ER  - 
%0 Journal Article
%A V. V. Petrov
%T A theorem on the strong law of large numbers for a sequence of nonnegative random variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 172-174
%V 396
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a10/
%G ru
%F ZNSL_2011_396_a10
V. V. Petrov. A theorem on the strong law of large numbers for a sequence of nonnegative random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 172-174. http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a10/

[1] V. V. Petrov, “K usilennomu zakonu bolshikh chisel dlya posledovatelnosti neotritsatelnykh sluchainykh velichin”, Zap. nauchn. semin. POMI, 384, 2010, 182–184 | MR

[2] V. V. Petrov, “Ob usilennom zakone bolshikh chisel dlya posledovatelnosti neotritsatelnykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 53:2 (2008), 379–382 | DOI | Zbl

[3] A. Dvoretzky, “On the strong stability of a sequence of events”, Ann. Math. Statist., 20 (1949), 296–299 | DOI | MR | Zbl