@article{ZNSL_2011_396_a1,
author = {Ya. I. Belopolskaya and W. A. Woyczynski},
title = {Probabilistic approach to viscosity solutions of the {Cauchy} problem for systems of fully nonlinear parabolic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {31--66},
year = {2011},
volume = {396},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a1/}
}
TY - JOUR AU - Ya. I. Belopolskaya AU - W. A. Woyczynski TI - Probabilistic approach to viscosity solutions of the Cauchy problem for systems of fully nonlinear parabolic equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 31 EP - 66 VL - 396 UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a1/ LA - ru ID - ZNSL_2011_396_a1 ER -
%0 Journal Article %A Ya. I. Belopolskaya %A W. A. Woyczynski %T Probabilistic approach to viscosity solutions of the Cauchy problem for systems of fully nonlinear parabolic equations %J Zapiski Nauchnykh Seminarov POMI %D 2011 %P 31-66 %V 396 %U http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a1/ %G ru %F ZNSL_2011_396_a1
Ya. I. Belopolskaya; W. A. Woyczynski. Probabilistic approach to viscosity solutions of the Cauchy problem for systems of fully nonlinear parabolic equations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 31-66. http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a1/
[1] Ya. I. Belopolskaya, Yu. L. Daletskii, “Issledovanie zadachi Koshi dlya sistem kvazilineinykh uravnenii s pomoschyu markovmkikh protsessov”, Izv. VUZ Matematika, 1978, no. 12, 6–17 | MR | Zbl
[2] Ya. I. Belopolskaya, Yu. L. Dalecky, Stochastic equations and differential geometry, Kluwer, 1990 | MR | Zbl
[3] Ya. I. Belopolskaya, Yu. L. Daletskii, “Markovskie protsessy, assotsiirovannye s nelineinymi parabolicheskimi sistemami”, DAN SSSR, 250:1 (1980), 521–524 | MR | Zbl
[4] J. F. Pommaret, Systems of partial differential equations and Lie pseudogroups, Gordon and Breach Sci Publ., N.Y., 1978 | MR | Zbl
[5] Ya. Belopolskaya, “Probability approach to solution of nonlinear parabolic equations”, Problems Math. Anal., 13 (1992), 21–35
[6] E. Pardoux, S. Peng, “Adapted solution of a backward stochastic differential equation”, Systems Control Lett., 14 (1990), 55–61 | DOI | MR | Zbl
[7] E. Pardoux, S. Peng, Backward stochastic differential equations and qasilinear parabolic partial differential equations, Lect. Notes CIS, 176, Springer-Verlag, 1992 | MR
[8] S. Peng, “Probabilistic interpretation for systems of quasilinear parabolic partial differential equations”, Stoch. Stoch. Rep., 37 (1991), 61–74 | DOI | MR | Zbl
[9] J. Ma, J. Yong, Forward-backward stochastic differential equations and their applications, Lect. Notes Math., 1702, Springer-Verlag, 1999 | MR | Zbl
[10] H. Pham, Continuous-time stochastic control and optimization with financial applications, Series Stochastic Modeling and Applied Probability, 61, Springer-Verlag, 2009 | DOI | MR | Zbl
[11] P. Cheredito, H. Soner, N. Touzi, N. Victoir, “Second order backward stochastic differential equations and fully nonlinear parabolic PDEs”, Comm. Pure Appl. Math., 60:7 (2007), 1081–1110 | DOI | MR
[12] M. Crandall, H. Ishii, P. Lions, “User's guide to viscosity solutions of second order partial differential equations”, Bull. AMS, 27:1 (1992), 1–67 | DOI | MR | Zbl
[13] Ya. Belopolskaya, “Probabilistic approaches to nonlinear parabolic equations in jet-bundles”, Global Stoch. Anal., 1:1 (2010), 3–40
[14] Y. Hu, S. Peng, “Solution of forward-backward stochastic differential equations”, Probab. Theory Relat. Fields, 103 (1995), 273–283 | DOI | MR | Zbl