Probabilistic approach to viscosity solutions of the Cauchy problem for systems of fully nonlinear parabolic equations
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 31-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we discuss a probabilistic approach to the construction of a viscosity solution of the Cauchy problem for a system of nonlinear parabolic equations. Our approach is based on a reduction of the original problem to a system of quasilinear parabolic equation in the first step and to a system of fully coupled forward-backward stochastic differential equations in the second step. The solution of the stochastic problem allows us to construct a probabilistic representation of a viscosity solution of the original problem and state conditions to ensure the existence and uniqueness of this solution.
@article{ZNSL_2011_396_a1,
     author = {Ya. I. Belopolskaya and W. A. Woyczynski},
     title = {Probabilistic approach to viscosity solutions of the {Cauchy} problem for systems of fully nonlinear parabolic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {31--66},
     year = {2011},
     volume = {396},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a1/}
}
TY  - JOUR
AU  - Ya. I. Belopolskaya
AU  - W. A. Woyczynski
TI  - Probabilistic approach to viscosity solutions of the Cauchy problem for systems of fully nonlinear parabolic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 31
EP  - 66
VL  - 396
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a1/
LA  - ru
ID  - ZNSL_2011_396_a1
ER  - 
%0 Journal Article
%A Ya. I. Belopolskaya
%A W. A. Woyczynski
%T Probabilistic approach to viscosity solutions of the Cauchy problem for systems of fully nonlinear parabolic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 31-66
%V 396
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a1/
%G ru
%F ZNSL_2011_396_a1
Ya. I. Belopolskaya; W. A. Woyczynski. Probabilistic approach to viscosity solutions of the Cauchy problem for systems of fully nonlinear parabolic equations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 31-66. http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a1/

[1] Ya. I. Belopolskaya, Yu. L. Daletskii, “Issledovanie zadachi Koshi dlya sistem kvazilineinykh uravnenii s pomoschyu markovmkikh protsessov”, Izv. VUZ Matematika, 1978, no. 12, 6–17 | MR | Zbl

[2] Ya. I. Belopolskaya, Yu. L. Dalecky, Stochastic equations and differential geometry, Kluwer, 1990 | MR | Zbl

[3] Ya. I. Belopolskaya, Yu. L. Daletskii, “Markovskie protsessy, assotsiirovannye s nelineinymi parabolicheskimi sistemami”, DAN SSSR, 250:1 (1980), 521–524 | MR | Zbl

[4] J. F. Pommaret, Systems of partial differential equations and Lie pseudogroups, Gordon and Breach Sci Publ., N.Y., 1978 | MR | Zbl

[5] Ya. Belopolskaya, “Probability approach to solution of nonlinear parabolic equations”, Problems Math. Anal., 13 (1992), 21–35

[6] E. Pardoux, S. Peng, “Adapted solution of a backward stochastic differential equation”, Systems Control Lett., 14 (1990), 55–61 | DOI | MR | Zbl

[7] E. Pardoux, S. Peng, Backward stochastic differential equations and qasilinear parabolic partial differential equations, Lect. Notes CIS, 176, Springer-Verlag, 1992 | MR

[8] S. Peng, “Probabilistic interpretation for systems of quasilinear parabolic partial differential equations”, Stoch. Stoch. Rep., 37 (1991), 61–74 | DOI | MR | Zbl

[9] J. Ma, J. Yong, Forward-backward stochastic differential equations and their applications, Lect. Notes Math., 1702, Springer-Verlag, 1999 | MR | Zbl

[10] H. Pham, Continuous-time stochastic control and optimization with financial applications, Series Stochastic Modeling and Applied Probability, 61, Springer-Verlag, 2009 | DOI | MR | Zbl

[11] P. Cheredito, H. Soner, N. Touzi, N. Victoir, “Second order backward stochastic differential equations and fully nonlinear parabolic PDEs”, Comm. Pure Appl. Math., 60:7 (2007), 1081–1110 | DOI | MR

[12] M. Crandall, H. Ishii, P. Lions, “User's guide to viscosity solutions of second order partial differential equations”, Bull. AMS, 27:1 (1992), 1–67 | DOI | MR | Zbl

[13] Ya. Belopolskaya, “Probabilistic approaches to nonlinear parabolic equations in jet-bundles”, Global Stoch. Anal., 1:1 (2010), 3–40

[14] Y. Hu, S. Peng, “Solution of forward-backward stochastic differential equations”, Probab. Theory Relat. Fields, 103 (1995), 273–283 | DOI | MR | Zbl