Bounds for the extreme eigenvalues of the Laplacian and signless Laplacian of a~graph
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 104-123
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper suggests a new approach to deriving lower bounds for the Laplacian spectral radius and upper bounds for the smallest eigenvalue of the signless Laplacian of an undirected simple $r$-partite graph on $n$ vertices, $2\le r\le n$. The approach is based on inequalities for the extreme eigenvalues of a block-partitioned Hermitian matrix, established earlier, and on the Rayleigh principle. Specific lower and upper bounds, generalizing and extending known results from $r=2$ to $r\ge2$ are considered, and the cases where these bounds are sharp are described.
@article{ZNSL_2011_395_a9,
author = {L. Yu. Kolotilina},
title = {Bounds for the extreme eigenvalues of the {Laplacian} and signless {Laplacian} of a~graph},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {104--123},
publisher = {mathdoc},
volume = {395},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a9/}
}
TY - JOUR AU - L. Yu. Kolotilina TI - Bounds for the extreme eigenvalues of the Laplacian and signless Laplacian of a~graph JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 104 EP - 123 VL - 395 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a9/ LA - ru ID - ZNSL_2011_395_a9 ER -
L. Yu. Kolotilina. Bounds for the extreme eigenvalues of the Laplacian and signless Laplacian of a~graph. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 104-123. http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a9/