Products of orthoprojectors and Hermitian matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 67-70
Voir la notice de l'article provenant de la source Math-Net.Ru
A proof of the following result is presented: A matrix $A\in M_n(\mathbf C)$ can be represented as a product $A=PH$, where $P$ is an orthoprojector and $H$ is Hermitian, if and only if $A$ satisfies the equation $A^{*2}A=A^*A^2$ (the Radjavi–Williams theorem). Unlike the original proof, ours makes no use of the Crimmins theorem.
@article{ZNSL_2011_395_a5,
author = {Kh. D. Ikramov},
title = {Products of orthoprojectors and {Hermitian} matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {67--70},
publisher = {mathdoc},
volume = {395},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a5/}
}
Kh. D. Ikramov. Products of orthoprojectors and Hermitian matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 67-70. http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a5/