Products of orthoprojectors and Hermitian matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 67-70

Voir la notice de l'article provenant de la source Math-Net.Ru

A proof of the following result is presented: A matrix $A\in M_n(\mathbf C)$ can be represented as a product $A=PH$, where $P$ is an orthoprojector and $H$ is Hermitian, if and only if $A$ satisfies the equation $A^{*2}A=A^*A^2$ (the Radjavi–Williams theorem). Unlike the original proof, ours makes no use of the Crimmins theorem.
@article{ZNSL_2011_395_a5,
     author = {Kh. D. Ikramov},
     title = {Products of orthoprojectors and {Hermitian} matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--70},
     publisher = {mathdoc},
     volume = {395},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a5/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Products of orthoprojectors and Hermitian matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 67
EP  - 70
VL  - 395
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a5/
LA  - ru
ID  - ZNSL_2011_395_a5
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Products of orthoprojectors and Hermitian matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 67-70
%V 395
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a5/
%G ru
%F ZNSL_2011_395_a5
Kh. D. Ikramov. Products of orthoprojectors and Hermitian matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 67-70. http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a5/