Nonsmooth spline-wavelet decompositions and their properties
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 31-60
Voir la notice de l'article provenant de la source Math-Net.Ru
Simple methods for constructing embedded spaces of splines (in general, nonsmooth and nonpolynomial) of the first order corresponding to local coarsening of an irregular mesh are provided, their wavelet decompositions are presented, and the commutativity of the decomposition operators is established.
@article{ZNSL_2011_395_a3,
author = {Yu. K. Dem'yanovich},
title = {Nonsmooth spline-wavelet decompositions and their properties},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {31--60},
publisher = {mathdoc},
volume = {395},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a3/}
}
Yu. K. Dem'yanovich. Nonsmooth spline-wavelet decompositions and their properties. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 31-60. http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a3/