Nonsmooth spline-wavelet decompositions and their properties
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 31-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Simple methods for constructing embedded spaces of splines (in general, nonsmooth and nonpolynomial) of the first order corresponding to local coarsening of an irregular mesh are provided, their wavelet decompositions are presented, and the commutativity of the decomposition operators is established.
@article{ZNSL_2011_395_a3,
     author = {Yu. K. Dem'yanovich},
     title = {Nonsmooth spline-wavelet decompositions and their properties},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {31--60},
     year = {2011},
     volume = {395},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a3/}
}
TY  - JOUR
AU  - Yu. K. Dem'yanovich
TI  - Nonsmooth spline-wavelet decompositions and their properties
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 31
EP  - 60
VL  - 395
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a3/
LA  - ru
ID  - ZNSL_2011_395_a3
ER  - 
%0 Journal Article
%A Yu. K. Dem'yanovich
%T Nonsmooth spline-wavelet decompositions and their properties
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 31-60
%V 395
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a3/
%G ru
%F ZNSL_2011_395_a3
Yu. K. Dem'yanovich. Nonsmooth spline-wavelet decompositions and their properties. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 31-60. http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a3/

[1] I. Ya. Novikov, S. B. Stechkin, “Osnovy teorii vspleskov”, Uspekhi mat. nauk, 53:6(324) (1998), 53–128 | DOI | MR | Zbl

[2] K. Chui, Vvedenie v veivlety, Mir, M., 2001

[3] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, Nauka, M., 1980 | MR

[4] Yu. K. Demyanovich, “Vspleskovye razlozheniya v prostranstvakh splainov na neravnomernoi setke”, Dokl. RAN, 382:3 (2002), 313–316 | MR | Zbl

[5] Yu. K. Demyanovich, “Minimalnye splainy i vspleski”, Vestnik SPbGU, 2008, no. 2, 8–22 | Zbl

[6] Yu. K. Demyanovich, “Minimalnye splainy lagranzheva tipa”, Problemy matematicheskogo analiza, 50, 2010, 21–64 | MR