On the mutual change of values of a function and its coefficients in the class of typically real functions
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 20-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper coninues investigations of the well-known class $T$ of typically real functions $f(z)$ in the disk $U=\{z\colon|z|<1\}$. The region of values of the system $\{c_2,c_3,f(z_1),f(z_2)\}$ in the class $T$ is studied. The region of values of $f(z_2)$ in the class of functions $f\in T$ with fixed values $c_2,c_3$ and $f(z_1)$ is determined.
@article{ZNSL_2011_395_a2,
     author = {E. G. Goluzina},
     title = {On the mutual change of values of a~function and its coefficients in the class of typically real functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {20--30},
     year = {2011},
     volume = {395},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a2/}
}
TY  - JOUR
AU  - E. G. Goluzina
TI  - On the mutual change of values of a function and its coefficients in the class of typically real functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 20
EP  - 30
VL  - 395
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a2/
LA  - ru
ID  - ZNSL_2011_395_a2
ER  - 
%0 Journal Article
%A E. G. Goluzina
%T On the mutual change of values of a function and its coefficients in the class of typically real functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 20-30
%V 395
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a2/
%G ru
%F ZNSL_2011_395_a2
E. G. Goluzina. On the mutual change of values of a function and its coefficients in the class of typically real functions. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 20-30. http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a2/

[1] E. G. Goluzina, “Ob oblastyakh znachenii nekotorykh sistem funktsionalov v klasse tipichno veschestvennykh funktsii”, Vestn. LGU, ser. mat., mekh. i astr., 1965, no. 7(2), 45–62 | MR | Zbl

[2] Yu. E. Alenitsyn, “Ob oblastyakh izmeneniya sistem koeffitsientov funktsii, predstavimykh summoi integralov Stiltesa”, Vestnik LGU, ser. mat., mekh. i astr., 1962, no. 7(2), 25–41 | Zbl

[3] M. G. Krein, A. A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, M., 1973

[4] E. G. Goluzina, “O mnozhestve znachenii sistemy $\{c_2,f(z_1),f(z_2)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 371, 2009, 7–17 | MR

[5] E. G. Goluzina, “O mnozhestve znachenii nachalnykh koeffitsientov v odnom klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 263, 2000, 40–48 | MR | Zbl

[6] M. S. Robertson, “On the coefficients of a typically real function”, Bull. Amer. Math. Soc., 41:8 (1935), 565–572 | DOI | MR | Zbl | Zbl

[7] G. M. Goluzin, “O tipichno veschestvennykh funktsiyakh”, Mat. sb., 27(69):2 (1950), 201–218 | MR | Zbl

[8] E. G. Goluzina, “O mnozhestve znachenii sistemy $\{c_2,c_3,f(z_1),f'(z_1)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 382, 2010, 5–14

[9] F. R. Gantmakher, Teoriya matrits, 3-e izd., M., 1967