To solving spectral problems for $q$-parameter polynomial matrices.~2
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 162-171
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper continues the studies of the method of hereditary pencils for computing points of the finite spectrum of a multiparameter polynomial matrix. The method involves induction on the number of parameters and consists of two stages. At the first stage, given the coefficients of a multiparameter matrix, a sequence of $(q-k)$-parameter polynomial matrices ($k=1,\dots,q$) satisfying certain recursive relations is formed. This sequence is used at the second stage. As the base case, two-parameter matrices and their spectral characteristics, which are computed by applying the method of hereditary pencils, are considered. Algorithms implementing the second stage are suggested and theoretically justified.
@article{ZNSL_2011_395_a13,
author = {V. N. Kublanovskaya and V. B. Khazanov},
title = {To solving spectral problems for $q$-parameter polynomial matrices.~2},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {162--171},
publisher = {mathdoc},
volume = {395},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a13/}
}
TY - JOUR AU - V. N. Kublanovskaya AU - V. B. Khazanov TI - To solving spectral problems for $q$-parameter polynomial matrices.~2 JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 162 EP - 171 VL - 395 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a13/ LA - ru ID - ZNSL_2011_395_a13 ER -
V. N. Kublanovskaya; V. B. Khazanov. To solving spectral problems for $q$-parameter polynomial matrices.~2. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 162-171. http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a13/