To solving spectral problems for $q$-parameter polynomial matrices.~2
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 162-171

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper continues the studies of the method of hereditary pencils for computing points of the finite spectrum of a multiparameter polynomial matrix. The method involves induction on the number of parameters and consists of two stages. At the first stage, given the coefficients of a multiparameter matrix, a sequence of $(q-k)$-parameter polynomial matrices ($k=1,\dots,q$) satisfying certain recursive relations is formed. This sequence is used at the second stage. As the base case, two-parameter matrices and their spectral characteristics, which are computed by applying the method of hereditary pencils, are considered. Algorithms implementing the second stage are suggested and theoretically justified.
@article{ZNSL_2011_395_a13,
     author = {V. N. Kublanovskaya and V. B. Khazanov},
     title = {To solving spectral problems for $q$-parameter polynomial matrices.~2},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--171},
     publisher = {mathdoc},
     volume = {395},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a13/}
}
TY  - JOUR
AU  - V. N. Kublanovskaya
AU  - V. B. Khazanov
TI  - To solving spectral problems for $q$-parameter polynomial matrices.~2
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 162
EP  - 171
VL  - 395
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a13/
LA  - ru
ID  - ZNSL_2011_395_a13
ER  - 
%0 Journal Article
%A V. N. Kublanovskaya
%A V. B. Khazanov
%T To solving spectral problems for $q$-parameter polynomial matrices.~2
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 162-171
%V 395
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a13/
%G ru
%F ZNSL_2011_395_a13
V. N. Kublanovskaya; V. B. Khazanov. To solving spectral problems for $q$-parameter polynomial matrices.~2. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 162-171. http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a13/