@article{ZNSL_2011_395_a12,
author = {V. N. Kublanovskaya},
title = {To solving the eigenvalue problem for polynomial matrices of general form},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {154--161},
year = {2011},
volume = {395},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a12/}
}
V. N. Kublanovskaya. To solving the eigenvalue problem for polynomial matrices of general form. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 154-161. http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a12/
[1] V. N. Kublanovskaya, V. B. Khazanov, Chislennye metody resheniya parametricheskikh zadach algebry. Chast 1. Odnoparametricheskie zadachi, Nauka, S.-Peterburg, 2004
[2] V. N. Kublanovskaya, “K resheniyu zadach algebry dlya dvukhparametricheskikh matrits”, Zap. nauchn. semin. POMI, 367, 2009, 121–144
[3] C. B. Moler, G. W. Stewart, “An algorithm for generalized matrix eigenvalue problems”, SIAM J. Numer. Anal., 10 (1973), 241–256 | DOI | MR | Zbl
[4] C. Van Loan, “A general matrix eigenvalue algorithm”, SIAM J. Numer. Anal., 12 (1975), 819–834 | DOI | MR | Zbl
[5] V. N. Kublanovskaya, “The $AB$-algorithm and its modifications for the spectral problems of linear pencils of matrices”, Numer. Math., 43:3 (1984), 329–342 | DOI | MR | Zbl
[6] B. Kagström, “RGSVD – an algorithm for computing the Kronecker structure and reducing subspaces of singular $A-\lambda B$ pencils”, SIAM J. Sci. and Stat. Comput., 7:1 (1986), 185–211 | DOI | MR | Zbl