To solving the eigenvalue problem for polynomial matrices of general form
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 154-161

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the eigenvalue problem for a polynomial $m\times n$ matrix $F(\mu)$ of rank $\rho$. Algorithms allowing one to reduce this problem to the generalized matrix eigenvalue problem are suggested. The algorithms are based on combining rank factorization methods and the method of hereditary pencils. Methods for exhausting subspaces of polynomial solutions of zero index from the matrix null-spaces and for isolating the regular kernel from $F(\mu)$, with the subsequent linearization, are proposed.
@article{ZNSL_2011_395_a12,
     author = {V. N. Kublanovskaya},
     title = {To solving the eigenvalue problem for polynomial matrices of general form},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {154--161},
     publisher = {mathdoc},
     volume = {395},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a12/}
}
TY  - JOUR
AU  - V. N. Kublanovskaya
TI  - To solving the eigenvalue problem for polynomial matrices of general form
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 154
EP  - 161
VL  - 395
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a12/
LA  - ru
ID  - ZNSL_2011_395_a12
ER  - 
%0 Journal Article
%A V. N. Kublanovskaya
%T To solving the eigenvalue problem for polynomial matrices of general form
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 154-161
%V 395
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a12/
%G ru
%F ZNSL_2011_395_a12
V. N. Kublanovskaya. To solving the eigenvalue problem for polynomial matrices of general form. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 154-161. http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a12/