To solving the eigenvalue problem for polynomial matrices of general form
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 154-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers the eigenvalue problem for a polynomial $m\times n$ matrix $F(\mu)$ of rank $\rho$. Algorithms allowing one to reduce this problem to the generalized matrix eigenvalue problem are suggested. The algorithms are based on combining rank factorization methods and the method of hereditary pencils. Methods for exhausting subspaces of polynomial solutions of zero index from the matrix null-spaces and for isolating the regular kernel from $F(\mu)$, with the subsequent linearization, are proposed.
@article{ZNSL_2011_395_a12,
     author = {V. N. Kublanovskaya},
     title = {To solving the eigenvalue problem for polynomial matrices of general form},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {154--161},
     year = {2011},
     volume = {395},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a12/}
}
TY  - JOUR
AU  - V. N. Kublanovskaya
TI  - To solving the eigenvalue problem for polynomial matrices of general form
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 154
EP  - 161
VL  - 395
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a12/
LA  - ru
ID  - ZNSL_2011_395_a12
ER  - 
%0 Journal Article
%A V. N. Kublanovskaya
%T To solving the eigenvalue problem for polynomial matrices of general form
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 154-161
%V 395
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a12/
%G ru
%F ZNSL_2011_395_a12
V. N. Kublanovskaya. To solving the eigenvalue problem for polynomial matrices of general form. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 154-161. http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a12/

[1] V. N. Kublanovskaya, V. B. Khazanov, Chislennye metody resheniya parametricheskikh zadach algebry. Chast 1. Odnoparametricheskie zadachi, Nauka, S.-Peterburg, 2004

[2] V. N. Kublanovskaya, “K resheniyu zadach algebry dlya dvukhparametricheskikh matrits”, Zap. nauchn. semin. POMI, 367, 2009, 121–144

[3] C. B. Moler, G. W. Stewart, “An algorithm for generalized matrix eigenvalue problems”, SIAM J. Numer. Anal., 10 (1973), 241–256 | DOI | MR | Zbl

[4] C. Van Loan, “A general matrix eigenvalue algorithm”, SIAM J. Numer. Anal., 12 (1975), 819–834 | DOI | MR | Zbl

[5] V. N. Kublanovskaya, “The $AB$-algorithm and its modifications for the spectral problems of linear pencils of matrices”, Numer. Math., 43:3 (1984), 329–342 | DOI | MR | Zbl

[6] B. Kagström, “RGSVD – an algorithm for computing the Kronecker structure and reducing subspaces of singular $A-\lambda B$ pencils”, SIAM J. Sci. and Stat. Comput., 7:1 (1986), 185–211 | DOI | MR | Zbl