To solving problems of algebra for two-parameter matrices. 9
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 124-141
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper continues investigations of the spectral characteristics of two-parameter polynomial matrices of general form. An approach to constructing algorithms for computing points of the regular, singular, and regular-singular spectra of a matrix is suggested and theoretically justified. New algorithms, based on combining rank factorization methods and the method of hereditary pencils, for computing spectrum points and spectral vectors and also new algorithms for finding points of the regular and singular spectra of two-parameter matrices linearly dependent on the parameters are proposed.
@article{ZNSL_2011_395_a10,
author = {V. N. Kublanovskaya},
title = {To solving problems of algebra for two-parameter matrices.~9},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {124--141},
year = {2011},
volume = {395},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a10/}
}
V. N. Kublanovskaya. To solving problems of algebra for two-parameter matrices. 9. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 124-141. http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a10/
[1] V. N. Kublanovskaya, “K resheniyu zadach algebry dlya dvukhparametricheskikh matrits. 8”, Zap. nauchn. semin. POMI, 382, 2010, 150–167
[2] V. N. Kublanovskaya, “K resheniyu problemy sobstvennykh znachenii dlya polinomialnykh matrits obschego vida”, Zap. nauchn. semin. POMI, 395, 2011, 154–161
[3] V. N. Kublanovskaya, “K resheniyu zadach algebry dlya dvukhparametricheskikh matrits. 4”, Zap. nauchn. semin. POMI, 367, 2009, 121–144
[4] V. N. Kublanovskaya, V. B. Khazanov, Chislennye metody resheniya parametricheskikh zadach algebry. Chast 1. Odnoparametricheskie zadachi, Nauka, S.-Peterburg, 2004
[5] V. N. Kublanovskaya, “K resheniyu zadach algebry dlya dvukhparametricheskikh matrits. 1”, Zap. nauchn. semin. POMI, 359, 2008, 107–149 | Zbl