A criterion for unitary congruence between complex matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 9-19

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ and $B$ be square complex matrices. Based on an important result of Y. P. Hong and R. A. Horn, we propose a criterion for verifying unitary congruence of these matrices. The criterion requires that a finite number of arithmetic operations be performed. No criteria with this finiteness property were previously known.
@article{ZNSL_2011_395_a1,
     author = {Yu. A. Al'pin and Kh. D. Ikramov},
     title = {A criterion for unitary congruence between complex matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {9--19},
     publisher = {mathdoc},
     volume = {395},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a1/}
}
TY  - JOUR
AU  - Yu. A. Al'pin
AU  - Kh. D. Ikramov
TI  - A criterion for unitary congruence between complex matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 9
EP  - 19
VL  - 395
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a1/
LA  - ru
ID  - ZNSL_2011_395_a1
ER  - 
%0 Journal Article
%A Yu. A. Al'pin
%A Kh. D. Ikramov
%T A criterion for unitary congruence between complex matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 9-19
%V 395
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a1/
%G ru
%F ZNSL_2011_395_a1
Yu. A. Al'pin; Kh. D. Ikramov. A criterion for unitary congruence between complex matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 9-19. http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a1/