A criterion for unitary congruence between complex matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 9-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $A$ and $B$ be square complex matrices. Based on an important result of Y. P. Hong and R. A. Horn, we propose a criterion for verifying unitary congruence of these matrices. The criterion requires that a finite number of arithmetic operations be performed. No criteria with this finiteness property were previously known.
@article{ZNSL_2011_395_a1,
     author = {Yu. A. Al'pin and Kh. D. Ikramov},
     title = {A criterion for unitary congruence between complex matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {9--19},
     year = {2011},
     volume = {395},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a1/}
}
TY  - JOUR
AU  - Yu. A. Al'pin
AU  - Kh. D. Ikramov
TI  - A criterion for unitary congruence between complex matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 9
EP  - 19
VL  - 395
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a1/
LA  - ru
ID  - ZNSL_2011_395_a1
ER  - 
%0 Journal Article
%A Yu. A. Al'pin
%A Kh. D. Ikramov
%T A criterion for unitary congruence between complex matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 9-19
%V 395
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a1/
%G ru
%F ZNSL_2011_395_a1
Yu. A. Al'pin; Kh. D. Ikramov. A criterion for unitary congruence between complex matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 9-19. http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a1/

[1] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR

[2] C. Pearcy, “A complete set of unitary invariants for operators generating finite $W^*$-algebras of type. I”, Pacif. J. Math., 12 (1962), 1405–1416 | DOI | MR | Zbl

[3] Yu. A. Alpin, Kh. D. Ikramov, “Kriterii unitarnoi kongruentnosti matrits”, Dokl. RAN, 437:1 (2011), 7–8 | MR | Zbl

[4] Y. Hong, R. A. Horn, “A characterization of unitary congruence”, Linear and Multilinear Algebra, 25 (1989), 105–119 | DOI | MR | Zbl

[5] Yu. A. Alpin, Kh. D. Ikramov, “Ob unitarnom podobii matrichnykh semeistv”, Mat. zametki, 74:6 (2003), 815–826 | DOI | MR | Zbl

[6] B. L. van der Waerden, Algebra, v. I, Springer-Verlag, 2003

[7] C. Pappacena, “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl