@article{ZNSL_2011_395_a1,
author = {Yu. A. Al'pin and Kh. D. Ikramov},
title = {A criterion for unitary congruence between complex matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {9--19},
year = {2011},
volume = {395},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a1/}
}
Yu. A. Al'pin; Kh. D. Ikramov. A criterion for unitary congruence between complex matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 9-19. http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a1/
[1] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR
[2] C. Pearcy, “A complete set of unitary invariants for operators generating finite $W^*$-algebras of type. I”, Pacif. J. Math., 12 (1962), 1405–1416 | DOI | MR | Zbl
[3] Yu. A. Alpin, Kh. D. Ikramov, “Kriterii unitarnoi kongruentnosti matrits”, Dokl. RAN, 437:1 (2011), 7–8 | MR | Zbl
[4] Y. Hong, R. A. Horn, “A characterization of unitary congruence”, Linear and Multilinear Algebra, 25 (1989), 105–119 | DOI | MR | Zbl
[5] Yu. A. Alpin, Kh. D. Ikramov, “Ob unitarnom podobii matrichnykh semeistv”, Mat. zametki, 74:6 (2003), 815–826 | DOI | MR | Zbl
[6] B. L. van der Waerden, Algebra, v. I, Springer-Verlag, 2003
[7] C. Pappacena, “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl