The algebraic analog of the Borel construction and its properties
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 262-293
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Suppose that $G$ is an affine algebraic group scheme faithfully flat over another affine scheme $X=\operatorname{Spec}R$, $H$ is a closed faithfully flat $X$-subscheme and $G/H$ is an affine $X$-scheme. In this case we prove the equivalence of two categories: left $R[H]$-comodules and $G$-equivariant vector bundles over $G/H$, and that this equivalence respects tensor products. Our algebraic construction is based on the well-known geometric Borel construction.
@article{ZNSL_2011_394_a9,
     author = {I. B. Kobyzev},
     title = {The algebraic analog of the {Borel} construction and its properties},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {262--293},
     year = {2011},
     volume = {394},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a9/}
}
TY  - JOUR
AU  - I. B. Kobyzev
TI  - The algebraic analog of the Borel construction and its properties
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 262
EP  - 293
VL  - 394
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a9/
LA  - ru
ID  - ZNSL_2011_394_a9
ER  - 
%0 Journal Article
%A I. B. Kobyzev
%T The algebraic analog of the Borel construction and its properties
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 262-293
%V 394
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a9/
%G ru
%F ZNSL_2011_394_a9
I. B. Kobyzev. The algebraic analog of the Borel construction and its properties. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 262-293. http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a9/

[1] M.-F. Atiyah, F. Hirzebruch, “Vector bundles and homogeneous spaces”, Proc. Symp. Pure Math., 3 (1961), 7–38 | DOI | MR | Zbl

[2] I. A. Panin, “On the algebraic $K$-theory of twisted flag varieties”, $K$-Theory, 8:6 (1994), 541–585 | DOI | MR | Zbl

[3] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 | MR

[4] Dzh. Miln, Etalnye kogomologii, Mir, M., 1983 | MR

[5] M. Atya, I. Makdonald, Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR