@article{ZNSL_2011_394_a8,
author = {S. O. Ivanov},
title = {Selfinjective algebras of stable {Calabi{\textendash}Yau} dimension three},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {226--261},
year = {2011},
volume = {394},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a8/}
}
S. O. Ivanov. Selfinjective algebras of stable Calabi–Yau dimension three. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 226-261. http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a8/
[1] A. I. Bondal, M. M. Kapranov, “Predstavimye funktory, funktory Serra i perestroiki”, Izv. AN SSSR. Ser. matem., 53:6 (1989), 1183–1205 | MR | Zbl
[2] B. Keller, “Calabi–Yau triangulated categories”, Trends in representation theory of algebras and related topics, ed. A. Skowronski, E. M. S., Zurich, 2008, 467–489 | DOI | MR | Zbl
[3] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Series, 119, Cambridge Univ. Press, 1988 | MR | Zbl
[4] I. Reiten, M. van den Bergh, “Noetherian hereditary abelian categories satisfying Serre duality”, J. Amer. Math. Soc., 15 (2002), 295–366 | DOI | MR | Zbl
[5] M. Kontsevich, Triangulated categories and geometry, Course at the École Normale Supérieure, Notes taken by J. Bellaiche, J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona, Paris, 1998
[6] K. Erdmann, A. Skowroński, “The stable Calabi–Yau dimension of tame symmetric algebras”, J. Math. Soc. Japan, 58 (2006), 97–123 | DOI | MR
[7] K. Erdmann, Blocks of Tame Representation Type and Related Algebras, Lecture Notes Math., 1428, Springer, 1990 | MR | Zbl
[8] P. M. Cohn, Algebra, v. 3, Second Edition, Wiley, 1991 | MR | Zbl
[9] M. C. R. Butler, A. D. King, “Minimal resolutions of algebras”, J. Algebra, 212 (1999), 323–362 | DOI | MR | Zbl
[10] J. Kock, Frobenius algebras and 2D topological quantum field theories, London Mathematical Society Student Texts, 59, Cambridge University Press, Cambridge, 2004 | MR | Zbl
[11] F. Kash, Moduli i koltsa, Mir, M., 1981 | MR
[12] S. O. Ivanov, “Funktory Nakayamy i teoremy Eilenberga–Uotsa”, Zap. nauchn. semin. POMI, 388, 2011, 179–188 | MR