Selfinjective algebras of stable Calabi–Yau dimension three
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 226-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper, we introduce the class of algebras, which allows the so-called DTI-family of relations. With few exceptions, the stable Calabi–Yau dimension of these algebras is equal to 3. We prove that all algebras of quaternion type are contained in this class, and we give some other examples of such algebras. Furthermore, we describe minimal projective bimodule resolutions for algebras from this class.
@article{ZNSL_2011_394_a8,
     author = {S. O. Ivanov},
     title = {Selfinjective algebras of stable {Calabi{\textendash}Yau} dimension three},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {226--261},
     year = {2011},
     volume = {394},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a8/}
}
TY  - JOUR
AU  - S. O. Ivanov
TI  - Selfinjective algebras of stable Calabi–Yau dimension three
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 226
EP  - 261
VL  - 394
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a8/
LA  - ru
ID  - ZNSL_2011_394_a8
ER  - 
%0 Journal Article
%A S. O. Ivanov
%T Selfinjective algebras of stable Calabi–Yau dimension three
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 226-261
%V 394
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a8/
%G ru
%F ZNSL_2011_394_a8
S. O. Ivanov. Selfinjective algebras of stable Calabi–Yau dimension three. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 226-261. http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a8/

[1] A. I. Bondal, M. M. Kapranov, “Predstavimye funktory, funktory Serra i perestroiki”, Izv. AN SSSR. Ser. matem., 53:6 (1989), 1183–1205 | MR | Zbl

[2] B. Keller, “Calabi–Yau triangulated categories”, Trends in representation theory of algebras and related topics, ed. A. Skowronski, E. M. S., Zurich, 2008, 467–489 | DOI | MR | Zbl

[3] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Series, 119, Cambridge Univ. Press, 1988 | MR | Zbl

[4] I. Reiten, M. van den Bergh, “Noetherian hereditary abelian categories satisfying Serre duality”, J. Amer. Math. Soc., 15 (2002), 295–366 | DOI | MR | Zbl

[5] M. Kontsevich, Triangulated categories and geometry, Course at the École Normale Supérieure, Notes taken by J. Bellaiche, J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona, Paris, 1998

[6] K. Erdmann, A. Skowroński, “The stable Calabi–Yau dimension of tame symmetric algebras”, J. Math. Soc. Japan, 58 (2006), 97–123 | DOI | MR

[7] K. Erdmann, Blocks of Tame Representation Type and Related Algebras, Lecture Notes Math., 1428, Springer, 1990 | MR | Zbl

[8] P. M. Cohn, Algebra, v. 3, Second Edition, Wiley, 1991 | MR | Zbl

[9] M. C. R. Butler, A. D. King, “Minimal resolutions of algebras”, J. Algebra, 212 (1999), 323–362 | DOI | MR | Zbl

[10] J. Kock, Frobenius algebras and 2D topological quantum field theories, London Mathematical Society Student Texts, 59, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[11] F. Kash, Moduli i koltsa, Mir, M., 1981 | MR

[12] S. O. Ivanov, “Funktory Nakayamy i teoremy Eilenberga–Uotsa”, Zap. nauchn. semin. POMI, 388, 2011, 179–188 | MR