Tangent cones of Schubert varieties for $A_n$ of lower rank
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 218-225
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper we calculate the tangent cones for the Schubert varieties for series $A_n$ of rank less or equal to four, we formulate hypotheses on the structure of tangent cones in the general case.
@article{ZNSL_2011_394_a7,
author = {D. Yu. Eliseev and A. N. Panov},
title = {Tangent cones of {Schubert} varieties for $A_n$ of lower rank},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {218--225},
year = {2011},
volume = {394},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a7/}
}
D. Yu. Eliseev; A. N. Panov. Tangent cones of Schubert varieties for $A_n$ of lower rank. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 218-225. http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a7/
[1] S. Billey, V. Lakshmibay, Singular Loci of Schubert Varities, Progr. Math., 182, Birkhäuser, Boston, 2000 | MR | Zbl
[2] A. A. Kirillov, “Two more variations on the triangular theme”, Progr. Math., 213 (2003), 243–258 | MR | Zbl
[3] I. R. Shafarevich, Osnovy algebraicheskoi geometrii, v. 1, Nauka, M., 1988 | MR
[4] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl
[5] D. Koks, Dzh. Littl, D. O'Shi, Idealy, mnogoobraziya i algoritmy, Mir, M., 2000