Tangent cones of Schubert varieties for $A_n$ of lower rank
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 218-225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper we calculate the tangent cones for the Schubert varieties for series $A_n$ of rank less or equal to four, we formulate hypotheses on the structure of tangent cones in the general case.
@article{ZNSL_2011_394_a7,
     author = {D. Yu. Eliseev and A. N. Panov},
     title = {Tangent cones of {Schubert} varieties for $A_n$ of lower rank},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {218--225},
     year = {2011},
     volume = {394},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a7/}
}
TY  - JOUR
AU  - D. Yu. Eliseev
AU  - A. N. Panov
TI  - Tangent cones of Schubert varieties for $A_n$ of lower rank
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 218
EP  - 225
VL  - 394
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a7/
LA  - ru
ID  - ZNSL_2011_394_a7
ER  - 
%0 Journal Article
%A D. Yu. Eliseev
%A A. N. Panov
%T Tangent cones of Schubert varieties for $A_n$ of lower rank
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 218-225
%V 394
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a7/
%G ru
%F ZNSL_2011_394_a7
D. Yu. Eliseev; A. N. Panov. Tangent cones of Schubert varieties for $A_n$ of lower rank. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 218-225. http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a7/

[1] S. Billey, V. Lakshmibay, Singular Loci of Schubert Varities, Progr. Math., 182, Birkhäuser, Boston, 2000 | MR | Zbl

[2] A. A. Kirillov, “Two more variations on the triangular theme”, Progr. Math., 213 (2003), 243–258 | MR | Zbl

[3] I. R. Shafarevich, Osnovy algebraicheskoi geometrii, v. 1, Nauka, M., 1988 | MR

[4] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[5] D. Koks, Dzh. Littl, D. O'Shi, Idealy, mnogoobraziya i algoritmy, Mir, M., 2000