Forms of higher degree over certain fields
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 209-217
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $F$ be a nonformally real field, $n,r$ positive integers. Suppose that for any prime number $p\le n$ the quotient group $F^*/{F^*}^p$ is finite. We prove that if $N$ is big enough, then any system of $r$ forms of degree $n$ in $N$ variables over $F$ has a nonzero solution. Also we show that if in addition $F$ is infinite, then any diagonal form with nonzero coefficients of degree $n$ in $|F^*/{F^*}^n|$ variables is universal, i.e. its set of nonzero values coincides with $F^*$.
@article{ZNSL_2011_394_a6,
author = {A. L. Glazman and P. B. Zatitski and A. S. Sivatski and D. M. Stolyarov},
title = {Forms of higher degree over certain fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {209--217},
publisher = {mathdoc},
volume = {394},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a6/}
}
TY - JOUR AU - A. L. Glazman AU - P. B. Zatitski AU - A. S. Sivatski AU - D. M. Stolyarov TI - Forms of higher degree over certain fields JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 209 EP - 217 VL - 394 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a6/ LA - en ID - ZNSL_2011_394_a6 ER -
A. L. Glazman; P. B. Zatitski; A. S. Sivatski; D. M. Stolyarov. Forms of higher degree over certain fields. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 209-217. http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a6/