Forms of higher degree over certain fields
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 209-217
Voir la notice du chapitre de livre
Let $F$ be a nonformally real field, $n,r$ positive integers. Suppose that for any prime number $p\le n$ the quotient group $F^*/{F^*}^p$ is finite. We prove that if $N$ is big enough, then any system of $r$ forms of degree $n$ in $N$ variables over $F$ has a nonzero solution. Also we show that if in addition $F$ is infinite, then any diagonal form with nonzero coefficients of degree $n$ in $|F^*/{F^*}^n|$ variables is universal, i.e. its set of nonzero values coincides with $F^*$.
@article{ZNSL_2011_394_a6,
author = {A. L. Glazman and P. B. Zatitski and A. S. Sivatski and D. M. Stolyarov},
title = {Forms of higher degree over certain fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {209--217},
year = {2011},
volume = {394},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a6/}
}
TY - JOUR AU - A. L. Glazman AU - P. B. Zatitski AU - A. S. Sivatski AU - D. M. Stolyarov TI - Forms of higher degree over certain fields JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 209 EP - 217 VL - 394 UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a6/ LA - en ID - ZNSL_2011_394_a6 ER -
A. L. Glazman; P. B. Zatitski; A. S. Sivatski; D. M. Stolyarov. Forms of higher degree over certain fields. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 209-217. http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a6/
[1] R. Brauer, “A note on systems of homogeneous algebraic equations”, Bull. AMS, 51 (1945), 749–755 | DOI | MR | Zbl
[2] T. Y. Lam, Introduction to quadratic forms over fields, Graduate studies in Mathematics, 67, 2005 | MR | Zbl
[3] D. B. Leep, W. M. Schmidt, “Systems of homogeneous equations”, Invent. Math., 71:3 (1983), 539–549 | DOI | MR | Zbl
[4] W. Scharlau, Quadratic and Hermitian Forms, Springer, Berlin–Heidelberg–New York, 1985 | MR | Zbl