Canonical basis of Hensel–Shafarevich in complete discrete valuation fields
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 174-193 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Starting with Hensel's generating set of principal units, we construct a base of the module of principal units, in the multiplicative group of a complete descrete valuation field with the residue field of prime characteristic we prove the uniqueness of the above base, and as a corollary, the uniqueness of the canonical Shafarevich base.
@article{ZNSL_2011_394_a4,
     author = {S. V. Vostokov},
     title = {Canonical basis of {Hensel{\textendash}Shafarevich} in complete discrete valuation fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {174--193},
     year = {2011},
     volume = {394},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a4/}
}
TY  - JOUR
AU  - S. V. Vostokov
TI  - Canonical basis of Hensel–Shafarevich in complete discrete valuation fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 174
EP  - 193
VL  - 394
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a4/
LA  - ru
ID  - ZNSL_2011_394_a4
ER  - 
%0 Journal Article
%A S. V. Vostokov
%T Canonical basis of Hensel–Shafarevich in complete discrete valuation fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 174-193
%V 394
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a4/
%G ru
%F ZNSL_2011_394_a4
S. V. Vostokov. Canonical basis of Hensel–Shafarevich in complete discrete valuation fields. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 174-193. http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a4/

[1] M. V. Bondarko, “Yavnaya klassifikatsiya formalnykh grupp nad polnymi diskretno normirovannymi polyami s nesovershennym polem vychetov”, Trudy S.-Peterburgskogo mat. obschestva, 11, 2005, 1–36

[2] I. R. Shafarevich, “Obschii zakon vzaimnosti”, Mat. sbornik, 26(68):1 (1950), 113–146 | MR | Zbl

[3] H. Hasse, “Die Gruppe der $p^n$-primären Zahlen für einen Primteiler $\mathfrak p$ von p”, J. reine angew. Math., 176 (1936), 174–183 | Zbl

[4] K. Hensel, “Die multiplikative Darstellung der algebraischen Zahlen für den Bereich eines beliebigen Primteilers”, J. reine angew. Math., 146 (1916), 189–215 | Zbl

[5] I. Fesenko, S. Vostokov, Local Fields and Their Extensions, AMS, Providence, 1993 | MR | Zbl

[6] I. B. Zhukov, Kommutativnaya algebra, Izd. Sankt-Peterburgskogo universiteta, 2009