Linear groups over general rings. I. Generalities
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 33-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is the first part of a systematic survey on the structure of classical groups over general rings. We intend to cover various proofs of the main structure theorems, commutator formulae, finiteness and stability conditions, stability and pre-stability theorems, nilpotency of $\mathrm K_1$, centrality of $\mathrm K_2$, automorphism and homomorphisms, etc. This first part covers background material such as one-sided inverses, elementary transformations, definitions of obvious subgroups, Bruhat and Gauss decompositions, relative subgroups, finitary phenomens, and transvections.
@article{ZNSL_2011_394_a2,
     author = {N. A. Vavilov and A. V. Stepanov},
     title = {Linear groups over general {rings.~I.} {Generalities}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--139},
     year = {2011},
     volume = {394},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a2/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - A. V. Stepanov
TI  - Linear groups over general rings. I. Generalities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 33
EP  - 139
VL  - 394
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a2/
LA  - ru
ID  - ZNSL_2011_394_a2
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A A. V. Stepanov
%T Linear groups over general rings. I. Generalities
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 33-139
%V 394
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a2/
%G ru
%F ZNSL_2011_394_a2
N. A. Vavilov; A. V. Stepanov. Linear groups over general rings. I. Generalities. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 33-139. http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a2/

[1] E. Abe, “Avtomorfizmy grupp Shevalle nad kommutativnymi koltsami”, Algebra i analiz, 5:2 (1993), 74–90 | MR | Zbl

[2] E. Artin, Geometricheskaya algebra, Nauka, M., 1969 | MR | Zbl

[3] A. S. Atkarskaya, Avtomorfizmy gruppy $\mathrm{GL}_n(R)$, $n\ge4$, nad assotsiativnym graduirovannym koltsom, Kursovaya rabota, MGU, 2009, 24 pp.

[4] V. G. Bardakov, “O razlozhenii avtomorfizmov svobodnykh modulei na prostye mnozhiteli”, Izv. RAN, Ser. Matem., 59:2 (1995), 109–128 | MR | Zbl

[5] Kh. Bass, Algebraicheskaya $K$-teoriya, Mir, M., 1973 | MR | Zbl

[6] Kh. Bass, Dzh. Milnor, Zh.-P. Serr, “Reshenie kongruents-problemy dlya $\mathrm{SL}_n$ ($n\ge3$) i $\mathrm{Sp}_{2n}$ ($n\ge2$)”, Matematika. Period. sb. perev. in. statei, 14:6 (1970), 64–128 ; Математика. Период. сб. перев. ин. статей, 15:1 (1971), 44–60 | Zbl | Zbl

[7] V. M. Bondarenko, “O podobii matrits nad koltsami vychetov”, Matematicheskii Sbornik, Naukova Dumka, Kiev, 1976, 275–277 | MR

[8] Z. I. Borevich, N. A. Vavilov, “Raspolozhenie podgrupp, soderzhaschikh gruppu kletochno diagonalnykh matrits, v polnoi lineinoi gruppe nad koltsom”, Matematika. Izv. VUZov, 1982, no. 11, 12–16 | MR | Zbl

[9] Z. I. Borevich, N. A. Vavilov, “Ob opredelenii setevoi podgruppy”, Zap. nauchn. semin. LOMI, 132, 1983, 26–33 | MR | Zbl

[10] Z. I. Borevich, N. A. Vavilov, “Raspolozhenie podgrupp v polnoi lineinoi gruppe nad kommutativnym koltsom”, Tr. Mat. in-ta AN SSSR, 165, 1984, 24–42 | MR | Zbl

[11] O. V. Bryukhanov, “Genetika universalnykh grupp Shevalle nad nekotorymi kommutativnymi koltsami”, Mat. Zametki, 57:6 (1995), 814–826 | MR | Zbl

[12] N. Burbaki, Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR

[13] N. A. Vavilov, “Stroenie rasschepimykh klassicheskikh grupp nad kommutativnym koltsom”, Dokl. AN SSSR, 299:6 (1988), 1300–1303 | MR | Zbl

[14] N. A. Vavilov, “Vychisleniya v isklyuchitelnykh gruppakh”, Vestnik Samarskogo un-ta, Estestvennonauchnaya ser., 2007, no. 7, 11–24

[15] N. A. Vavilov, Ne sovsem naivnaya lineinaya algebra, v. II, Algebra matrits, OTsEiM, SPb., 2007, 223 pp.

[16] N. A. Vavilov, “Ctroenie izotropnykh reduktivnykh grupp”, Tr. In-ta Matematiki NAN Belarusi, 18, 2010, 1–13 | MR

[17] N. A. Vavilov, M. R. Gavrilovich, “$\mathrm A_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm E_6$ i $\mathrm E_7$”, Algebra i Analiz, 16:4 (2004), 54–87 | MR | Zbl

[18] N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Stroenie grupp Shevalle: dokazatelstvo iz Knigi”, Zap. nauchn. semin. POMI, 330, 2006, 36–76 | MR | Zbl

[19] N. A. Vavilov, V. G. Kazakevich, “Esche odna variatsiya na temu razlozheniya transvektsii”, Vestn. SPbGU, Ser. 1, 2008, no. 3, 71–74 | Zbl

[20] N. A. Vavilov, V. G. Kazakevich, “Razlozhenie transvektsii dlya avtomorfizmov”, Zap. nauchn. semin. POMI, 365, 2009, 47–62 | MR | Zbl

[21] N. A. Vavilov, V. G. Kazakevich, “Esche neskolko variatsii na temu razlozheniya transvektsii”, Zap. nauchn. semin. POMI, 375, 2010, 32–47 | MR | Zbl

[22] N. A. Vavilov, A. Yu. Luzgarev, $\mathrm A_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipa $\mathrm E_8$, 2011

[23] N. A. Vavilov, S. I. Nikolenko, “$\mathrm A_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipa $\mathrm F_4$”, Algebra i Analiz, 20:4 (2008), 27–63 | MR

[24] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{Ep}(2l,R)$”, Algebra i Analiz, 15:4 (2003), 72–114 | MR | Zbl

[25] N. A. Vavilov, E. B. Plotkin, A. V. Stepanov, “Vychisleniya v gruppakh Shevalle nad kommutativnymi koltsami”, Dokl. AN SSSR, 307:4 (1989), 788–791 | MR | Zbl

[26] N. A. Vavilov, S. S. Sinchuk, “Razlozheniya tipa Dennisa–Vasershteina”, Zap. nauchn. semin. POMI, 375, 2010, 48–60 | MR | Zbl

[27] N. A. Vavilov, S. S. Sinchuk, “Parabolicheskie faktorizatsii rasschepimykh klassicheskikh grupp”, Algebra i Analiz, 23:4 (2011), 1–30

[28] N. A. Vavilov, A. K. Stavrova, “Osnovnye reduktsii v zadache opisaniya normalnykh podgrupp”, Zap. nauchn. semin. POMI, 349, 2007, 30–52 | MR

[29] N. A. Vavilov, A. V. Stepanov, “O podgruppakh polnoi lineinoi gruppy nad koltsom, udovletvoryayuschim usloviyam stabilnosti”, Izv. VUZov, 1989, no. 10, 19–25 | MR | Zbl

[30] N. A. Vavilov, A. V. Stepanov, “Standartnaya kommutatsionnaya formula”, Vestn. SPbGU, Ser. 1, 2008, no. 1, 9–14 | MR | Zbl

[31] N. A. Vavilov, A. V. Stepanov, “Nadgruppy poluprostykh grupp”, Vestn. Samarskogo un-ta, Estestvennonauchnaya ser., 2008, no. 3, 51–95 | MR

[32] N. A. Vavilov, A. V. Stepanov, “Esche raz o standartnoi kommutatsionnoi formule”, Vestn. SPbGU, Ser. 1, 2010, no. 1, 16–22 | Zbl

[33] L. N. Vasershtein, “$\mathrm K_1$-teoriya i kongruentsproblema”, Mat. Zametki, 5:2 (1969), 233–244 | MR | Zbl

[34] L. N. Vasershtein, “O stabilizatsii obschei lineinoi gruppy nad koltsom”, Mat. Sb., 79(121):3 (1969), 405–424 | MR | Zbl

[35] L. N. Vasershtein, “Stabilizatsiya unitarnykh i ortogonalnykh grupp nad koltsami s involyutsiei”, Mat. Sb., 81(123):3 (1970), 328–351 | MR | Zbl

[36] L. N. Vasershtein, “Stabilnyi rang kolets i razmernost topologicheskikh prostranstv”, Funkts. Analiz, 5:2 (1971), 17–27 | MR | Zbl

[37] L. N. Vasershtein, “O gruppe $\mathrm{SL}_2$ nad dedekindovymi koltsami arifmeticheskogo tipa”, Mat. Sb., 89(131):2 (1972), 313–322 | MR | Zbl

[38] L. N. Vasershtein, “Stabilizatsiya klassicheskikh grupp nad koltsami”, Mat. Sb., 93(135):2 (1974), 268–295 | MR | Zbl

[39] L. N. Vasershtein, A. V. Mikhalev, “O normalnykh podgruppakh ortogonalnykh grupp nad koltsom s involyutsiei”, Algebra i Logika, 9:6 (1970), 629–632 | MR | Zbl

[40] L. N. Vasershtein, A. A. Suslin, “Problema Serra o proektivnykh modulyakh nad koltsami mnogochlenov i algebraicheskaya $\mathrm K$-teoriya”, Izv. AN SSSR, Ser. matem., 40:5 (1976), 993–1054 | MR | Zbl

[41] V. N. Gerasimov, “Gruppa edinits svobodnogo proizvedeniya kolets”, Mat. Sb., 134(176):1 (1987), 42–65 | MR | Zbl

[42] I. Z. Golubchik, “O polnoi lineinoi gruppe nad assotsiativnym koltsom”, Uspekhi mat. nauk, 28:3 (1973), 179–180 | MR | Zbl

[43] I. Z. Golubchik, “O normalnykh delitelyakh ortogonalnoi gruppy nad assotsiativnym koltsom s involyutsiei”, Uspekhi Mat. nauk, 30:6 (1975), 165 | Zbl

[44] I. Z. Golubchik, Normalnye podgruppy lineinykh i unitarnykh grupp nad koltsami, Kand. diss., MGU, 1981, 117 pp.

[45] I. Z. Golubchik, “O normalnykh delitelyakh lineinykh i unitarnykh grupp nad assotsiativnym koltsom”, Prostranstva nad algebrami i nekotorye voprosy teorii setei, Ufa, 1985, 122–142 | MR

[46] I. Z. Golubchik, “Izomorfizmy proektivnykh grupp nad assotsiativnymi koltsami”, Fundam. prikl. Mat., 1:1 (1995), 311–314 | MR | Zbl

[47] I. Z. Golubchik, “O polnoi lineinoi gruppe nad slabo neterovymi assotsiativnymi koltsami”, Fundam. i prikladn. mat., 1:3 (1995), 661–668 | MR | Zbl

[48] I. Z. Golubchik, “Gruppy tipa Li nad $\mathrm{PI}$-koltsami”, Fund. i prikladn. mat., 3:2 (1997), 399–424 | MR | Zbl

[49] I. Z. Golubchik, Lineinye gruppy nad assotsiativnymi koltsami, Dokt. diss., Ufa, 1997

[50] I. Z. Golubchik, “Izomorfizm gruppy $\mathrm{GL}_2(R)$ nad assotsiativnym koltsom $R$”, Uchenye Zap., Sb. nauchn. trudov, Izd-vo Bashk. GPU, Ufa, 2003, 21–34

[51] I. Z. Golubchik, A. V. Mikhalev, “Epimorfizmy proektivnykh grupp nad assotsiativnymi koltsami”, Algebra, MGU, 1982, 34–45 | MR | Zbl

[52] I. Z. Golubchik, A. V. Mikhalev, “Obobschennye gruppovye tozhdestva v klassicheskikh gruppakh”, Zap. nauchn. semin. LOMI, 114, 1982, 96–119 | MR | Zbl

[53] I. Z. Golubchik, A. V. Mikhalev, “Izomorfizmy polnoi lineinoi gruppy nad assotsiativnym koltsom”, Vestn. Mosk. un-ta, Ser. 1, 1983, no. 3, 61–72 | MR | Zbl

[54] I. Z. Golubchik, A. V. Mikhalev, “Izomorfizmy unitarnykh grupp nad assotsiativnymi koltsami”, Zap. nauchn. semin. LOMI, 132, 1983, 97–109 | MR

[55] I. Z. Golubchik, A. V. Mikhalev, “O gruppe elementarnykh matrits nad $\mathrm{PI}$-koltsami”, Issledovaniya po algebre, Tbilisi, 1985, 20–24

[56] D. Yu. Grigorev, “O sootnoshenii ranga i multiplikativnoi slozhnosti bilineinoi formy nad kommutativnym neterovym koltsom”, Zap. nauchn. semin. LOMI, 86, 1979, 66–81 | MR | Zbl

[57] Zh. Dedonne, Geometriya klassicheskikh grupp, Mir, M., 1974 | MR

[58] K. Kh. Zakiryanov, “Kriterii vkhozhdeniya v podgruppu, porozhdennuyu dvumernymi elementarnymi matritsami”, Algebra i Logika, 22:5 (1983), 489–503 | MR | Zbl

[59] K. Kh. Zakiryanov, “Konechnost shiriny simplekticheskikh grupp nad koltsami algebraicheskikh chisel otnositelno elementarnykh matrits”, Algebra i Logika, 24:6 (1985), 667–673 | MR | Zbl

[60] K. Kh. Zakiryanov, “Ob odnom svoistve dlya kolets mnogochlenov nad diskretno normirovannym koltsom”, Izv. VUZov, 1992, no. 2, 37–41 | MR | Zbl

[61] A. E. Zalesskii, “Lineinye gruppy”, Itogi nauki. Fundamentalnye napravleniya, 37, VINITI, M., 1989, 114–228 | MR

[62] E. I. Zelmanov, “Izomorfizmy polnykh lineinykh grupp nad assotsiativnymi koltsami”, Sib. Mat. Zhurn., 26:4 (1985), 49–67 | MR | Zbl

[63] A. S. Ismagilova, “Gomomorfizm gruppy $\mathrm{GL}_2(R)$”, Fundam. prikl. Mat., 11:3 (2005), 95–108 | MR | Zbl

[64] A. S. Ismagilova, “Izomorfizmy unitarnykh grupp nad koltsami”, Fundam. prikl. Mat., 12:2 (2006), 55–70 | MR | Zbl

[65] I. S. Klein, A. V. Mikhalev, “Ortogonalnaya gruppa Steinberga nad koltsom s involyutsiei”, Algebra i Logika, 9:2 (1970), 145–166 | MR | Zbl

[66] I. S. Klein, A. V. Mikhalev, “Unitarnaya gruppa Steinberga nad koltsom s involyutsiei”, Algebra i Logika, 9:5 (1970), 510–519 | MR | Zbl

[67] P. Kon, Svobodnye koltsa i ikh svyazi, Mir, M., 1975 | MR

[68] V. I. Kopeiko, “Stabilizatsiya simplekticheskikh grupp nad koltsom mnogochlenov”, Mat. Sb., 106(148):1 (1978), 94–107 | MR | Zbl

[69] V. I. Kopeiko, “Ob odnoi teoreme Suslina”, Zap. nauchn. semin. LOMI, 132, 1983, 119–121 | MR | Zbl

[70] V. I. Kopeiko, “O strukture simplekticheskoi gruppy kolets mnogochlenov nad regulyarnymi koltsami razmernosti $\le1$”, Uspekhi mat. nauk, 47:4 (1992), 193–194 | MR | Zbl

[71] V. I. Kopeiko, “O strukture simplekticheskoi gruppy kolets mnogochlenov nad regulyarnym koltsom”, Fund. i prikladn. mat., 1:2 (1995), 545–548 | MR | Zbl

[72] V. I. Kopeiko, “O strukture spetsialnoi lineinoi gruppy nad koltsom loranovskikh mnogochlenov”, Fund. i prikladn. mat., 1:4 (1995), 1111–1114 | MR | Zbl

[73] V. I. Kopeiko, “Simplekticheskie gruppy nad koltsami loranovskikh mnogochlenov i diagrammy skleiki”, Fund. i prikladn. mat., 5:3 (1999), 943–945 | MR | Zbl

[74] A. Yu. Luzgarev, A. K. Stavrova, “Sovershennost elementarnoi podgruppy izotropnoi reduktivnoi gruppy”, Algebra i Analiz, 23:5 (2011), 140–154 | MR

[75] Dzh. Milnor, Vvedenie v algebraicheskuyu $K$-teoriyu, Mir, M., 1974 | MR

[76] S. V. Nagornyi, “Kompleksnye predstavleniya polnoi lineinoi gruppy stepeni tri po modulyu stepeni prostogo chisla”, Zap. nauchn. semin. LOMI, 75, 1978, 143–150 | MR | Zbl

[77] Yu. P. Nesterenko, A. A. Suslin, “Gomologii polnoi lineinoi gruppy nad lokalnym koltsom i K-teoriya Milnora”, Izv. AN SSSR, Ser. Matem., 53:1 (1989), 121–146 | MR | Zbl

[78] G. A. Noskov, “Porozhdayuschie elementy i opredelyayuschie sootnosheniya simplekticheskikh grupp nad nekotorymi koltsami”, Mat. Zametki, 26:2 (1974), 237–246 | MR | Zbl

[79] O. T. O'Mira, “Lektsii o lineinykh gruppakh”, Avtomorfizmy klassicheskikh grupp, Mir, M., 1976, 57–166 | MR

[80] O. T. O'Mira, Lektsii o simplekticheskikh gruppakh, Mir, M., 1979

[81] O. T. O'Mira, “Obschaya teoriya izomorfizmov lineinykh grupp”, Izomorfizmy klassicheskikh grupp nad tselostnymi koltsami, Mir, M., 1980, 58–119 | MR

[82] I. A. Panin, “O stabilizatsii dlya ortogonalnoi i simplekticheskoi algebraicheskikh $K$-teorii”, Algebra i analiz, 1:3 (1989), 172–195 | MR | Zbl

[83] A. A. Paschevskii, Gruppy avtomorfizmov setevykh podgrupp lineinykh grupp, Kand. diss., Leningr. Gos. Un-t, 1984, 100 pp.

[84] V. M. Petechuk, “Avtomorfizmy $\mathrm{SL}_n$ i $\mathrm{GL}_n$ nad nekotorymi lokalnymi koltsami”, Mat. Zametki, 28:2 (1980), 187–204 | MR | Zbl

[85] V. M. Petechuk, “Avtomorfizmy $\mathrm{SL}_3(R)$, $\mathrm{GL}_3(R)$”, Mat. Zametki, 31:5 (1982), 657–668 | MR | Zbl

[86] V. M. Petechuk, “Avtomorfizmy matrichnykh grupp nad kommutativnymi koltsami”, Mat. Sb., 117(159):4 (1982), 534–547 | MR | Zbl

[87] V. M. Petechuk, “Gomomorfizmy lineinykh grupp nad kommutativnymi koltsami”, Mat. Zametki, 46:5 (1989), 50–61 | MR | Zbl

[88] V. M. Petechuk, “Stabilna budova liniinykh grup nad kiltsyami”, Dopovidi NAN Ukraïny, 2001, no. 11, 17–22 | MR | Zbl

[89] V. M. Petechuk, “Stabilnost kolets”, Nauk. Visnik Uzhgorod. un-tu, 19 (2009), 87–111 | Zbl

[90] V. A. Petrov, “Nechetnye unitarnye gruppy”, Zap. nauchn. semin. POMI, 305, 2003, 195–225 | MR | Zbl

[91] V. A. Petrov, Nadgruppy klassicheskikh grupp, Kand. diss., SPb. Gos. Un-t, 2005, 129 pp.

[92] V. A. Petrov, A. K. Stavrova, “Elementarnye podgruppy izotropnykh reduktivnykh grupp”, Algebra i Analiz, 20:4 (2008), 160–188 | MR

[93] Zh.-P. Serr, “Problema kongruents-podgrupp dlya $\mathrm{SL}_2$”, Matematika. Period. sb. perev. in. statei, 15:6 (1971), 12–45

[94] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[95] A. V. Stepanov, “Idealnyi stabilnyi rang kolets”, Vestn. LGU, 1986, no. 3, 46–51 | MR | Zbl

[96] A. V. Stepanov, “Stabilnyi rang i stabilnost proizvolnykh strok”, Uspekhi mat. nauk, 44:2 (1989), 243–244 | MR | Zbl

[97] A. V. Stepanov, Usloviya stabilnosti v teorii lineinykh grupp nad koltsami, Kand. diss., LGU, 1987, 112 pp.

[98] A. V. Stepanov, “Koltso konechnogo stabilnogo ranga ne obyazatelno konechno po Dedekindu”, Dokl. AN SSSR, 296:3 (1988), 546–549 | MR | Zbl

[99] A. V. Stepanov, “Opisanie podgrupp polnoi lineinoi gruppy nad koltsom pri pomoschi uslovii stabilnosti”, Koltsa i lineinye gruppy, Krasnodar, 1988, 82–91 | MR

[100] A. V. Stepanov, “O normalnom stroenii polnoi lineinoi gruppy nad koltsom”, Zap. nauchn. semin. POMI, 236, 1997, 166–182 | MR | Zbl

[101] A. A. Suslin, “Ob odnoi teoreme Kona”, Zap. nauchn. semin. LOMI, 64, 1976, 127–130 | MR | Zbl

[102] A. A. Suslin, “O stabilno svobodnykh modulyakh”, Mat. Sb., 102(144):4 (1977), 537–550 | MR | Zbl

[103] A A. Suslin, “O strukture spetsialnoi lineinoi gruppy nad koltsom mnogochlenov”, Izv. AN SSSR, Ser. Matem., 41:2 (1977), 235–252 | MR | Zbl

[104] A. A. Suslin, “Zakony vzaimnosti i stabilnyi rang koltsa mnogochlenov”, Izv. AN SSSR, Ser. Matem., 43:6 (1979), 1394–1429 | MR | Zbl

[105] A. A. Suslin, “Gomologii $\mathrm{GL}_n$, kharakteristicheskie klassy i $K$-teoriya Milnora”, Tr. Matem. In-ta AN SSSR, 165, 1984, 188–204 | MR | Zbl

[106] A. A. Suslin, V. I. Kopeiko, “Kvadratichnye moduli i ortogonalnye gruppy nad koltsami mnogochlenov”, Zap. nauchn. semin. LOMI, 71, 1977, 216–250 | MR | Zbl

[107] A. A. Suslin, M. S. Tulenbaev, “Teorema o stabilizatsii dlya $\mathrm K_2$-funktora Milnora”, Zap. nauchn. semin. LOMI, 64, 1976, 131–152 | MR | Zbl

[108] O. I. Tavgen, “Konechnaya shirina arifmeticheskikh grupp Shevalle ranga $\ge2$”, Dokl. AN SSSR, 310:4 (1990), 802–806 | MR | Zbl

[109] O. I. Tavgen, “Ogranichennoe porozhdenie grupp Shevalle nad koltsami algebraicheskikh chisel”, Izv. AN SSSR, Ser. matem., 54:1 (1990), 97–122 | MR | Zbl

[110] S. Tazhetdinov, “Subnormalnoe stroenie dvumernykh lineinykh grupp nad koltsami, blizkimi k polyam”, Algebra i Logika, 24:4 (1985), 414–425 | MR | Zbl

[111] S. Tazhetdinov, “Subnormalnoe stroenie simplekticheskikh grupp nad lokalnymi koltsami”, Mat. Zametki, 37:2 (1985), 289–298 | MR | Zbl

[112] S. Tazhetdinov, “Normalnoe stroenie simplekticheskikh grupp nad koltsami stabilnogo ranga 1”, Mat. Zametki, 39:4 (1986), 512–517 | MR | Zbl

[113] S. Tazhetdinov, “Subnormalnoe stroenie dvumernykh lineinykh grupp nad 6-primitivnymi koltsami”, Mat. Zametki, 52:4 (1992), 99–105 | MR | Zbl

[114] S. Tazhetdinov, “Subnormalnoe stroenie simplekicheskikh grupp nad (2,3)-polnymi koltsami”, Sib. Mat. Zhurn., 34:6 (1993), 165–169 | MR | Zbl

[115] S. Tazhetdinov, “Subnormalnoe stroenie dvumernykh lineinykh grupp nad polnymi koltsami”, Mat. Zametki, 71:6 (2002), 924–930 | DOI | MR | Zbl

[116] S. Tazhetdinov, “Stroenie subnormalnykh podgrupp simplekticheskikh grupp nad lokalnymi koltsami”, Sib. Mat. Zhurn., 47:3 (2006), 665–669 | MR | Zbl

[117] S. Tazhetdinov, “O subnormalnykh podgruppakh lineinykh grupp”, Sib. Mat. Zhurn., 49:1 (2008), 218–223 | MR | Zbl

[118] M. S. Tulenbaev, “Multiplikator Shura gruppy elementarnykh matrits konechnogo poryadka”, Zap. nauchn. semin. LOMI, 86, 1979, 162–169 | MR | Zbl

[119] M. S. Tulenbaev, “Gruppa Steinberga nad koltsom mnogochlenov”, Mat. Sb., 117(159):1 (1982), 131–144 | MR | Zbl

[120] K. Feis, Algebra: koltsa, moduli i kategorii, v. I, Mir, M., 1977

[121] Dzh. Khamfri, Arifmeticheskie gruppy, Mir, M., 1983 | MR

[122] S. G. Khlebutin, “Dostatochnye usloviya normalnosti gruppy elementarnykh matrits”, Uspekhi Mat. Nauk, 39:3 (1984), 245–246 | MR | Zbl

[123] S. G. Khlebutin, “Nekotorye svoistva elementarnoi podgruppy”, Algebra, logika i teoriya chisel, Izd-vo MGU, M., 1986, 86–90 | MR

[124] E. Abe, “Whitehead groups of Chevalley groups over polynomial rings”, Comm. Algebra, 11:12 (1983), 1271–1308 | DOI | MR

[125] E. Abe, “Chevalley groups over commutative rings”, Proc. Conf. Radical Theory (Sendai – 1988), 1988, 1–23 | MR | Zbl

[126] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Contemp. Math., 83 (1989), 1–17 | DOI | MR | Zbl

[127] E. Abe, “Automorphisms of Chevalley groups over commutative rings”, St.-Petersburg Math. J., 5:2 (1993), 287–300 | MR | Zbl

[128] E. Abe, “Chevalley groups over commutative rings. Normal subgroups and automorphisms”, Contemp. Math., 184 (1995), 13–23 | DOI | MR | Zbl

[129] E. Abe, J. Morita, “Some Tits systems with affine Weyl groups in Chevalley groups over Dedekind domains”, J. Algebra, 115 (1988), 450–465 | DOI | MR | Zbl

[130] E. Abe, K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 28:1 (1976), 185–198 | DOI | MR | Zbl

[131] H. Abels, Finite presentability of $S$-arithmetic groups. Compact presentability of solvable groups, Lecture Notes in Mathematics, 1261, Springer-Verlag, 1987 | MR | Zbl

[132] H. Abels, “Finiteness properties of certain arithmetic groups in the function field case”, Israel J. Math., 76 (1991), 113–128 | DOI | MR | Zbl

[133] P. Abramenko, “Über einige diskret normierte Funktionenringe, die keine $\mathrm{GE}_2$-Ringe sind”, Archiv Math., 46 (1986), 233–239 | DOI | MR | Zbl

[134] P. Abramenko, Endlichkeitseigenschaften der Gruppen $\mathrm{SL}_n(\mathbb F_q[t])$, Thesis, Univ. Frankfurt, 1987 | Zbl

[135] P. Abramenko, “Finiteness properties of Chevalley groups over $\mathbb F_q[t]$”, Israel J. Math., 87 (1994), 203–223 | DOI | MR | Zbl

[136] P. Abramenko, Twin buildings and applications to $S$-arithmetic groups, Lecture Notes Math., 1641, Springer-Verlag, 1996 | MR | Zbl

[137] P. Abramenko, “Finiteness properties of groups acting on twin buildings”, Groups: topological, combinatorial and arithmetic aspects, London Math. Soc. Lecture Notes, 331, Cambridge Univ. Press, 2004, 21–26 | MR

[138] P. Abramenko, On finite and elementary generation of $\mathrm{SL}_2(R)$, 2008, 20 pp., arXiv: 0808.1095v1

[139] A. N. Acharya, “A note on a stability theorem of the general linear group”, J. Indian Math. Soc., 39:1–4 (1975), 51–68 | MR | Zbl

[140] S. I. Adian, J. Mennicke, “Bounded generation of $\mathrm{SL}_n(\mathbb Z)$”, Int. J. Algebra Comput., 2:4 (1992), 357–365 | DOI | MR | Zbl

[141] R. Alperin, “$\mathrm{SL}_2(\mathbb Z[(1+\sqrt5)/2])$”, Duke Math. J., 47:3 (1980), 487–509 | DOI | MR | Zbl

[142] R. Alperin, “Homology of $\mathrm{PSL}_2(\mathbb Z[\omega])$”, Comment. Math. Helv., 55 (1980), 364–377 | DOI | MR | Zbl

[143] R. Alperin, “Normal subgroups of $\mathrm{PSL}_2(\mathbb Z[\sqrt{-3}])$”, Proc. Amer. Math. Soc., 124:10 (1996), 2935–2941 | DOI | MR | Zbl

[144] R. Alperin, D. Wright, “$\mathrm K_2(2,k[T,T^{-1}])$ is generated by ‘symbols’ ”, J. Algebra, 59:1 (1979), 39–46 | DOI | MR | Zbl

[145] J. B. An, X.-P. Tang, “The structure of symplectic groups over semi-local rings”, Acta Math. Sinica (New Series), 1:1 (1985), 1–15 | DOI | Zbl

[146] P. Ara, R. R. Goodearl, “Stable rank of corner rings”, Proc. Amer. Math. Soc., 133:3 (2004), 379–386 | MR

[147] F. A. Arlinghaus, L. N. Vaserstein, “The work of Pere Menal on normal subgroups”, Publicacions Math., 36 (1992), 389–400 | DOI | MR | Zbl

[148] S. Bachmuth, H. Mochizuki, “$E_2\neq\mathrm{SL}_2$ for most Laurent polynomial rings”, Amer. J. Math., 104 (1982), 1181–1189 | DOI | MR | Zbl

[149] A. Bak, The stable structure of quadratic modules, Thesis, Columbia Univ., 1969

[150] A. Bak, “Subgroups of the general linear group normalized by relative elementary groups”, Lecture Notes Math., 967, 1982, 1–22 | DOI | MR | Zbl

[151] A. Bak, “Nonabelian $\mathrm K$-theory: The nilpotent class of $\mathrm K_1$ and general stability”, $\mathrm K$-Theory, 4 (1991), 363–397 | DOI | MR | Zbl

[152] A. Bak, R. Hazrat, N. Vavilov, “Localization-completion strikes again: relative $\mathrm K_1$ is nilpotent by abelian”, J. Pure Appl. Algebra, 213 (2009), 1075–1085 | DOI | MR | Zbl

[153] A. Bak, R. Hazrat, N. Vavilov, Structure of hyperbolic unitary groups, v. II, Algebra Colloq., Normal subgroups, 2011

[154] A. Bak, V. Petrov, Guoping Tang, “Stability for quadratic $\mathrm K_1$”, $\mathrm K$-Theory, 30:1 (2003), 1–11 | DOI | MR | Zbl

[155] A. Bak, U. Rehmann, “The congruence subgroup and metaplectic problem for $\mathrm{SL}_{n\ge2}$ of division algebras”, J. Algebra, 78 (1982), 475–547 | DOI | MR | Zbl

[156] A. Bak, A. Stepanov, “Dimension theory and nonstable $\mathrm K$-theory for net groups”, Rend. Sem. Mat. Univ. Padova, 106 (2001), 207–253 | MR | Zbl

[157] A. Bak, Guoping Tang, “Stability for hermitian $\mathrm K_1$”, J. Pure Appl. Algebra, 150:2 (2000), 109–121 | DOI | MR

[158] A. Bak, N. Vavilov, “Normality for elementary subgroup functors”, Math. Proc. Cambridge Phil. Soc., 118:1 (1995), 1–18 | DOI | MR

[159] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[160] C. Bartolone, F. Bartolozzi, “Topics in geometric algebra over rings”, Rings and Geometry, 1985, 353–389 | DOI | MR | Zbl

[161] C. Bartolone, A. G. Spera, “Tits's theorem for the group $\mathrm{PGL}_2(L)$, $L$ a not necessarily commutative local ring”, Ann. Mat. Pura Appl., 149 (1987), 297–309 | DOI | MR | Zbl

[162] H. Bass, “The stable structure of quite general linear groups”, Bull. Amer. Math. Soc., 70:3 (1964), 430–434 | MR

[163] H. Bass, “$\mathrm K$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 22 (1964), 5–60 | DOI | MR | Zbl

[164] H. Bass, Lectures on topics in algebraic $K$-theory, Tata Inst. of Fundam. Research, Bombay, 1967 | MR | Zbl

[165] H. Bass, “Some problems in classical algebraic $\mathrm K$-theory”, Algebraic $\mathrm K$-Theory, Proc. Conf. (Battelle Memorial Inst., Seattle, Wash., 1972), v. II, Lecture Notes Math., 342, Classical algebraic $K$-Theory, 1973, 3–73 | MR | Zbl

[166] H. Bass, “Unitary algebraic $\mathrm K$-theory”, Algebraic $\mathrm K$-Theory, Proc. Conf. (Battelle Memorial Inst., Seattle, Wash., 1972), v. III, Lecture Notes Math., 343, Hermitian $K$-Theory and Geometric Applications, 1973, 57–265 | DOI | MR | Zbl

[167] H. Bass, Introduction to some methods of algebraic $K$-theory, Conf. Board Math. Sci., 20, 1974 | MR | Zbl

[168] H. Bass, J. Tate, “The Milnor ring of a global field”, Lecture Notes Math., 342, 1973, 349–446 | MR | Zbl

[169] R. Basu, R. Khanna, R. A. Rao, “On Quillen's local global principle”, Contemp. Math., 390 (2005), 17–30 | DOI | MR | Zbl

[170] R. Basu, R. A. Rao, “Injective stability for $\mathrm K_1$ of classical modules”, J. Algebra, 323 (2010), 867–877 | DOI | MR | Zbl

[171] E. Bayer-Fluckiger, L. Fainsilber, “Non unimodular hermitian forms”, Invent. Math., 123 (1996), 233–240 | DOI | MR | Zbl

[172] H. Behr, “Endliche Erzeugbarkeit arithmetischer Gruppen über Funktionenkörpern”, Invent. Math., 7 (1969), 1–32 | DOI | MR | Zbl

[173] H. Behr, “Eine endliche Präsentation der symplektischen Gruppe $\mathrm{Sp}_4(\mathbb Z)$”, Math. Z., 141 (1975), 47–56 | DOI | MR | Zbl

[174] H. Behr, “Explizite Präsentation von Chevalleygruppen über $\mathbb Z$”, Math. Z., 141 (1975), 235–241 | DOI | MR | Zbl

[175] H. Behr, “$\mathrm{SL}_3(\mathbb F_{q}[t])$ is not finitely presentable”, Proc. Symp. Homological Group Theory (Durham, 1977), London Math. Soc. Lecture Notes, 36, 213–224 | MR | Zbl

[176] H. Behr, “Finite presentability of arithmetic groups over global function fields”, Proc. Edinburgh Math. Soc., 30 (1987), 23–39 | DOI | MR | Zbl

[177] H. Behr, “Arithmetic groups over function fields. I. A complete characterisation of finitely generated and finitely presented arithmetic subgroups of reductive groups”, J. reine angew. Math., 495 (1998), 79–118 | DOI | MR | Zbl

[178] H. Behr, “Higher finiteness properties of $S$-arithmetic groups in the function field case. I”, Groups: topological, combinatorial and arithmetic aspects, London Math. Soc. Lecture Notes, 331, Cambridge Univ. Press, 2004, 27–42 | MR

[179] P. Bender, “Eine Präsentation der symplektischen Gruppe $\mathrm{Sp}(4,\mathbb Z)$ mit 2 Erzeugenden und 8 definierenden Relationen”, J. Algebra, 65:2 (1980), 328–331 | DOI | MR | Zbl

[180] G. M. Bergman, “Coproducts and some universal ring constructions”, Trans. Amer. Math. Soc., 200 (1977), 33–88 | DOI | MR

[181] A. J. Berrick, M. E. Keating, “Rectangular invertible matrices”, Amer. Math. Monthly, 104:4 (1997), 297–302 | DOI | MR | Zbl

[182] M. Bestvina, N. Brady, “Morse theory and finiteness properties of groups”, Invent. Math., 129 (1997), 445–470 | DOI | MR | Zbl

[183] S. Betley, “Homological stability for $O_{n,n}$ over a local ring”, Trans. Amer. Math. Soc., 303:1 (1987), 413–429 | MR | Zbl

[184] S. Betley, “Vanishing theorems for homology of $\mathrm{GL}_nR$”, J. Pure Appl. Algebra, 58 (1989), 213–226 | DOI | MR | Zbl

[185] S. Betley, “Homological stability for $O_{n,n}$ over semi-local rings”, Glasgow Math. J., 32:2 (1990), 255–259 | DOI | MR | Zbl

[186] M. Bhargava, “Higher composition laws. I. A new view of Gauss composition and quadratic generalizations”, Ann. Math., 159 (2004), 217–250 | DOI | MR | Zbl

[187] M. Bhargava, “Higher composition laws. II. On cubic analogues of Gauss composition”, Ann. Math., 159 (2004), 865–886 | DOI | MR | Zbl

[188] M. Bhargava, “Higher composition laws. III. The parametrization of quartic rings”, Ann. Math., 159 (2004), 1329–1360 | DOI | MR | Zbl

[189] M. Bhargava, “Higher composition laws. IV. The parametrization of quintic rings”, Ann. Math., 167 (2008), 53–94 | DOI | MR | Zbl

[190] M. L. Bolla, “Isomorphism of general linear groups over rings”, J. Algebra, 96 (1985), 592–602 | DOI | MR | Zbl

[191] A. Borel, “On the automorphisms of certain subgroups of semisimple Lie groups”, Proc. Bombay Coll. on Algebraic Geometry, 1968, 43–73 | MR

[192] A. Borel, J. Tits, “On abstract homomorphisms of simple algebraic groups”, Proc. Bombay Coll. on Algebraic Geometry, 1968, 75–82

[193] A. Borel, J. Tits, “Homomorphismes “abstraits” de groupes algébriques semi-simples”, Ann. Math., 73 (1973), 499–571 | DOI | MR

[194] J. Brenner, “The linear homogeneous groups. III”, Ann. Math., 71 (1960), 210–223 | DOI | MR | Zbl

[195] J. Browkin, J. Hurrelbrink, “On the generation of $K_2(\mathcal O)$ by symbols”, Lecture Notes Math., 1046, 1982, 29–31 | DOI | MR

[196] E. I. Bunina, Automorphisms of adjoint Chevalley groups of types $\mathrm A_l$, $\mathrm D_l$, $\mathrm E_l$ over local rings, 2007, 20 pp., arXiv: math/0702046[math.GR]

[197] E. I. Bunina, Automorphisms of Chevalley groups of types $\mathrm B_2$ and $\mathrm G_2$ over local rings, 2007, 21 pp., arXiv: 0711.0531[math.GR] | MR | Zbl | Zbl

[198] E. I. Bunina, “Automorphisms of Chevalley groups of type $\mathrm F_4$ over local rings with $1/2$”, J. Algebra, 323 (2010), 2270–2289 | DOI | MR | Zbl

[199] K.-U. Bux, K. Wortman, “A geometric proof that $\mathrm{SL}_2(\mathbb Z[t,t^{-1}])$ is not finitely presented”, Algebr. Geom. Topol., 6 (2006), 839–852 | DOI | MR | Zbl

[200] K.-U. Bux, K. Wortman, “Finiteness properties of arithmetic groups over function fields”, Invent. Math., 167 (2007), 355–378 | DOI | MR | Zbl

[201] K.-U. Bux, A. Mohammadi, K. Wortman, “$\mathrm{SL}_n(\mathbb Z[x])$ is not $\mathrm{FP}_{n-1}$”, Comment. Math. Helv., 85 (2010), 151–164 | DOI | MR | Zbl

[202] Cao Chongguang, Wang Luqun, “Normal subgroups of symplectic groups over rings with one in its stable range”, Acta Math. Sinica, 29 (1986), 323–326 | MR | Zbl

[203] D. Carter, G. E. Keller, “Bounded elementary generation of $\mathrm{SL}_n(\mathcal O)$”, Amer. J. Math., 105 (1983), 673–687 | DOI | MR | Zbl

[204] D. Carter, G. E. Keller, “Elementary expressions for unimodular matrices”, Commun. Algebra, 12 (1984), 379–389 | DOI | MR | Zbl

[205] D. Carter, G. E. Keller, Bounded elementary expressions in $\mathrm{SL}(2,\mathcal O)$, Preprint, Univ. Virginia, 1985, 11 pp.

[206] D. Carter, G. E. Keller, The congruence subgroup problem for non standard models, Preprint, Univ. Virginia, 1985, 44 pp.

[207] D. Carter, G. E. Keller, E. Paige, Bounded expressions in $\mathrm{SL}(2,\mathcal O)$, Preprint, Univ. Virginia, 1985, 21 pp.

[208] R. W. Carter, Yu Chen, “Automorphisms of affine Kac–Moody groups and related Chevalley groups over rings”, J. Algebra, 155 (1993), 44–94 | DOI | MR | Zbl

[209] J.-L. Cathelineau, “The tangent complex to the Bloch–Suslin complex”, Bull. Soc. Math. France, 135 (2007), 565–597 | MR | Zbl

[210] C. Chang, “The structure of the symplectic groups over semi-local domains”, J. Algebra, 35 (1975), 457–476 | DOI | MR | Zbl

[211] C. N. Chang, “Orthogonal groups over semi-local domains”, J. Algebra, 37 (1975), 137–164 | DOI | MR | Zbl

[212] R. Charney, “Homology stability for $\mathrm{GL}_n$ over a Dedekind domain”, Inv. Math., 56 (1980), 1–17 | DOI | MR | Zbl

[213] R. Charney, “On the problem of homology stability for congruence subgroups”, Comm. Algebra, 12 (1984), 2081–2123 | DOI | MR | Zbl

[214] R. Charney, “A generalization of a theorem of Vogtmann”, J. Pure Appl. Algebra, 44 (1987), 107–125 | DOI | MR | Zbl

[215] P. Chattopadhyay, R. A. Rao, “Elementary symplectic orbits and improved $\mathrm K_1$-stability”, J. $\mathrm K$-theory, 7:2 (2011), 389–403 | DOI | MR | Zbl

[216] Chen Huanyin, Chen Miaosen, “On products of three triangular matrices over associative rings”, Linear Algebra Applic., 387 (2004), 297–311 | DOI | MR | Zbl

[217] Chen Sheng, You Hong, “Subrings in imaginary quadratic fields which are not universal for $\mathrm{GE}_2$”, Acta Arithm., 107:3 (2003), 299–305 | DOI | MR | Zbl

[218] Chen Yu, “Isomorphic Chevalley groups over integral domains”, Rend. Sem. Mat. Univ. Padova, 92 (1994), 231–237 | MR | Zbl

[219] Chen Yu, “On representations of elementary subgroups of Chevalley groups over algebras”, Proc. Amer. Math. Soc., 123:8 (1995), 2357–2361 | DOI | MR | Zbl

[220] Chen Yu, “Automorphisms of simple Chevalley groups over $\mathbb Q$-algebras”, Tôhoku Math. J., 348 (1995), 81–97 | DOI | MR

[221] Chen Yu, “Isomorphisms of adjoint Chevalley groups over integral domains”, Trans. Amer. Math. Soc., 348:2 (1996), 521–541 | DOI | MR | Zbl

[222] Chen Yu, “Isomorphisms of Chevalley groups over algebras”, J. Algebra, 226:2 (2000), 719–741 | DOI | MR | Zbl

[223] Chen Yu, “Representation of degree two for elementary matrices over rings”, Comm. Algebra, 30:9 (2002), 4219–4234 | DOI | MR | Zbl

[224] Chu Huah, “On the $\mathrm{GE}_2$ of graded rings”, J. Algebra, 90:1 (1984), 208–216 | DOI | MR | Zbl

[225] Chu Huah, “The rows of a matrix in $E_2(R[X])$”, Chinese J. Math., 12:4 (1984), 245–254 | MR | Zbl

[226] P. M. Cohn, “Some remarks on the invariant basis property”, Topology, 5 (1966), 215–228 | DOI | MR | Zbl

[227] P. M. Cohn, “On the structure of $\mathrm{GL}_2$ over a ring”, Inst. Hautes Études Sci. Publ. Math., 30 (1966), 5–53 | DOI | MR

[228] P. M. Cohn, “A presentation of $\mathrm{GL}_2$ of a Euclidean imaginary quadratic number fields”, Mathematika, 15 (1968), 156–163 | DOI | MR | Zbl

[229] P. M. Cohn, “Automorphisms of two-dimensional linear groups over Euclidean domains”, J. London Math. Soc., 1 (1969), 279–292 | DOI | MR | Zbl

[230] P. M. Cohn, “$\mathrm K_2$ of polynomial rings and of free algebras”, Proc. Conf. Ring Theory (Utah, 1971), Academic Press, N.Y.–London, 1972, 117–123 | DOI | MR

[231] P. M. Cohn, L. Gerritzen, “On the group of symplectic matrices over a free associative algebra”, J. London Math. Soc., 63:2 (2001), 353–363 | DOI | MR | Zbl

[232] G. Cooke, P. J. Weinberger, “On the construction of division chains in algebraic number fields with application to $\mathrm{SL}_2$”, Comm. Algebra, 3 (1975), 481–524 | DOI | MR | Zbl

[233] G. Corach, A. R. Larotonda, “Le rang stable de certaines algèbres d'opérateurs”, C. R. Acad. Sci. Paris Sér I Mathématique, 296:23 (1983), 949–951 | MR | Zbl

[234] D. L. Costa, “Zero-dimensionality and the $\mathrm{GE}_2$ of polynomial rings”, J. Pure Appl. Algebra, 50 (1988), 223–229 | DOI | MR | Zbl

[235] D. L. Costa, G. E. Keller, “On the normal subgroups of $\mathrm{SL}(2,A)$”, J. Pure Appl. Algebra, 53 (1988), 201–226 | DOI | MR | Zbl

[236] D. L. Costa, G. E. Keller, “On the normal subgroups of $\mathrm{GL}(2,A)$”, J. Algebra, 135 (1990), 395–226 | DOI | MR

[237] D. L. Costa, G. E. Keller, “Normal subgroups of $\mathrm{SL}(2,A)$”, Bull. Amer. Math. Soc., 24 (1991), 131–135 | DOI | MR | Zbl

[238] D. L. Costa, G. E. Keller, “The $\mathrm E(2,A)$ sections of $\mathrm{SL}(2,A)$”, Ann. Math., 134:1 (1991), 159–188 | DOI | MR | Zbl

[239] D. L. Costa, G. E. Keller, “Radix redux: normal subgroups of symplectic group”, J. reine angew. Math., 427 (1992), 51–105 | MR | Zbl

[240] D. L. Costa, G. E. Keller, “Abstract radices”, Comm. Algebra, 25:7 (1997), 2099–2104 | DOI | MR | Zbl

[241] D. L. Costa, G. E. Keller, “Power residue symbol and the central sections of $\mathrm{SL}(2,A)$”, $\mathrm K$-Theory, 15:1 (1998), 33–98 | DOI | MR | Zbl

[242] D. L. Costa, G. E. Keller, “On the normal subgroups of $\mathrm G_2(A)$”, Trans. Amer. Math. Soc., 351:12 (1999), 5051–5088 | DOI | MR | Zbl

[243] R. K. Dennis, “Stability for $\mathrm K_2$”, Lecture Notes. Math., 353, 1973, 85–94 | DOI | MR | Zbl

[244] R. K. Dennis, “The $\mathrm{GE}_2$ property for discrete subrings of $\mathbb C$”, Proc. Amer. Math. Soc., 50 (1975), 77–82 | MR | Zbl

[245] R. K. Dennis, M. Krusemeyer, “$\mathrm K_2(A[X,Y]/XY)$, a problem of Swan and related computations”, J. Pure Appl. Algebra, 15 (1979), 125–148 | DOI | MR | Zbl

[246] R. K. Dennis, B. Magurn, L. N. Vaserstein, “Generalized Euclidean group rings”, J. reine angew. Math., 351 (1984), 113–128 | MR | Zbl

[247] R. K. Dennis, M. R. Stein, “The functor $\mathrm K_2$: a survey of computations and problems”, Lecture Notes Math., 342, 1972, 243–280 | MR

[248] R. K. Dennis, M. R. Stein, “Injective stability for $\mathrm K_2$ of local rings”, Bull. Amer. Math. Soc., 80 (1974), 1010–1013 | DOI | MR | Zbl

[249] R. K. Dennis, M. R. Stein, “$\mathrm K_2$ of discrete valuation rings”, Advances Math., 18 (1975), 182–238 | DOI | MR | Zbl

[250] R. K. Dennis, L. N. Vaserstein, “On a question of M. Newman on the number of commutators”, J. Algebra, 118 (1988), 150–161 | DOI | MR | Zbl

[251] R. K. Dennis, L. N. Vaserstein, “Commutators in linear groups”, $K$-theory, 2 (1989), 761–767 | DOI | MR | Zbl

[252] W. Dicks, B. Hartley, “On homomorphisms between special linear groups over division rings”, Comm. Algebra, 19 (2001), 1919–1943 | MR

[253] M. H. Dull, “Automorphisms of $\mathrm{PSL}_2$ over domains with few units”, J. Algebra, 27 (1973), 372–379 | DOI | MR | Zbl

[254] M. H. Dull, “Automorphisms of the two-dimensional linear groups over integral domains”, Amer. J. Math., 41 (1974), 1–40 | DOI | MR

[255] M. J. Dunwoody, “$K_2$ of a Euclidean ring”, J. Pure Appl. Algebra, 7 (1976), 53–58 | DOI | MR | Zbl

[256] W. G. Dwyer, “Twisted homological stability for general linear groups”, Ann. Math., 111 (1980), 239–251 | DOI | MR | Zbl

[257] P. Elbaz-Vincent, “The indecomposable $K_3$ of rings and homology of $\mathrm{SL}_2$”, J. Pure Appl. Algebra, 132:1 (1998), 27–71 | DOI | MR | Zbl

[258] P. Elbaz-Vincent, “Homology of linear groups with coefficients in the adjoint action and $K$-theory”, $K$-Theory, 16:1 (1999), 35–50 | DOI | MR | Zbl

[259] E. Ellers, H. Ishibashi, “Factorization of transformations over a local ring”, Linear Algebra. Appl., 85:1 (1987), 17–27 | DOI | MR | Zbl

[260] E. W. Ellers, H. Lausch, “Length theorems for the general linear group of a module over a local ring”, J. Austral. Math. Soc. ser. A, 46 (1989), 122–131 | DOI | MR | Zbl

[261] E. W. Ellers, H. Lausch, “Generators for classical groups of modules over local rings”, J. Geometry, 39:1–2 (1990), 60–79 | DOI | MR | Zbl

[262] I. V. Erovenko, “$\mathrm{SL}_n(F[x])$ is not boundedly generated by elementary matrices: explicit proof”, Electronic J. Linear Algebra, 11 (2004), 162–167 | MR | Zbl

[263] I. V. Erovenko, A. S. Rapinchuk, “Bounded generation of some $S$-arithmetic orthogonal groups”, C. R. Acad. Sci. Paris Ser. I Math., 333:5 (2001), 395–398 | DOI | MR | Zbl

[264] I. V. Erovenko, A. S. Rapinchuk, “Bounded generation of $S$-arithmetic subgroups of isotropic orthogonal groups over number fields”, J. Number Theory, 119:1 (2006), 28–48 | DOI | MR | Zbl

[265] D. R. Estes, J. Ohm, “Stable range in commutative rings”, J. Algebra, 7:3 (1967), 343–362 | DOI | MR | Zbl

[266] B. Fine, M. Newman, “The normal subgroup structure of the Picard groups”, Trans. Amer. Math. Soc., 302 (1987), 769–786 | DOI | MR | Zbl

[267] D. Flöge, “Zur Struktur der $\mathrm{PSL}_2$ über einigen imaginär-quadratischen Zahlringen”, Math. Z., 183 (1983), 255–279 | DOI | MR | Zbl

[268] T. Fournelle, S. Sidki, K. Weston, “On algebraic embeddings of rings into groups”, Arch. Math., 51 (1988), 425–433 | DOI | MR | Zbl

[269] M. R. Gabel, “Lower bounds on the stable range of polynomial rings”, Pacific J. Math., 61:1 (1975), 117–120 | DOI | MR | Zbl

[270] M. R. Gabel, A. V. Geramita, “Stable range for matrices”, J. Pure Appl. Algebra, 5:1 (1974), 97–112 ; “Erratum”, J. Pure Appl. Algebra, 7 (1976), 236 | DOI | MR | Zbl | MR

[271] A. S. Garge, R. A. Rao, “A nice group structure on the orbit space of unimodular vectors”, K-Theory, 38:2 (2008), 113–133 | DOI | MR | Zbl

[272] A. S. Garge, “The Steinberg formula for orbit groups”, Expositiones Math., 27 (2009), 341–349 | DOI | MR | Zbl

[273] S. C. Geller, “On the $\mathrm{GE}_n$ of a ring”, Ill. J. Math., 21:1 (1977), 109–112 | MR | Zbl

[274] S. C. Geller, C. A. Weibel, “$\mathrm K_1(A,B,I)$”, J. reine angew. Math., 342 (1983), 12–34 | MR | Zbl

[275] S. C. Geller, C. A. Weibel, “Subgroups of the elementary and Steinberg groups of congruence level $I^2$”, J. Pure Appl. Algebra, 35 (1985), 123–132 | DOI | MR | Zbl

[276] S. C. Geller, C. A. Weibel, “$\mathrm K_1(A,B,I)$. II”, $K$-theory, 2 (1989), 753–760 | DOI | MR | Zbl

[277] L. Gerritzen, “Symplectic $2\times2$ matrices over free algebras”, Indag. Math., 10:4 (1999), 507–512 | DOI | MR | Zbl

[278] I. Z. Golubchik, “Isomorphisms of the general linear group $\mathrm{GL}_n(R)$, $n\ge4$, over an associative ring”, Contemp. Math., 131:1 (1992), 123–136 | DOI | MR | Zbl

[279] K. R. Goodearl, P. Menal, “Stable range one for rings with many units”, J. Pure Appl. Algebra, 54 (1988), 261–287 | DOI | MR | Zbl

[280] D. R. Grayson, “$\mathrm{SK}_1$ of an interesting principal ideal domain”, J. Pure Appl. Algebra, 20 (1981), 157–163 | DOI | MR | Zbl

[281] Sh. M. Green, “Generators and relations for $\mathrm K_2$ of a division ring”, Lecture Notes Math., 551, 1976, 74–76 | DOI | MR | Zbl

[282] Sh. M. Green, “Generators and relations for the special linear group over a division ring”, Proc. Amer. Math. Soc., 62:2 (1977), 229–232 | DOI | MR | Zbl

[283] F. J. Grunewald, J. Mennicke, L. N. Vaserstein, “On symplectic groups over polynomial rings”, Math. Z., 206:1 (1991), 35–56 | DOI | MR | Zbl

[284] F. J. Grunewald, J. Mennicke, L. N. Vaserstein, “On the groups $\mathrm{SL}_2(\mathbb Z[x])$ and $\mathrm{SL}_2(K[x,y])$”, Israel J. Math., 86:1–3 (1994), 157–193 | DOI | MR | Zbl

[285] F. J. Grunewald, J. Schwermer, “Free nonabelian quotients of $\mathrm{SL}_2$ over orders of imaginary quadratic number fields”, J. Algebra, 69 (1981), 298–304 | DOI | MR | Zbl

[286] D. Guin, “Stabilité de l'homologie du groupe linéare et $K$-théorie algébrique”, C. R. Acad. Sci. Paris, 304 (1987), 219–222 | MR | Zbl

[287] D. Guin, “Homologie du groupe lineire et $K$-théorie de Milnor des anneaux”, J. Algebra, 123:1 (1989), 27–59 | DOI | MR | Zbl

[288] S. K. Gupta, M. P. Murthy, Suslin's work on linear groups over polynomial rings and Serre problem, ISI Lect. Notes, 8, 1980

[289] G. Habdank, A classification of subgroups of $\Lambda$-quadratic groups normalized by relative elementary subgroups, Dissertation, Universität Bielefeld, 1987, 71 pp.

[290] G. Habdank, “A classification of subgroups of $\Lambda$-quadratic groups normalized by relative elementary subgroups”, Adv. Math., 110:2 (1995), 191–233 | DOI | MR | Zbl

[291] U. Hadad, “Uniform Kazhdan constant for some familes of linear groups”, J. Algebra, 318:2 (2007), 607–618 | DOI | MR | Zbl

[292] A. J. Hahn, “On the homomorphisms of the integral linear groups”, Math. Ann., 197 (1972), 234–250 | DOI | MR | Zbl

[293] A. J. Hahn, “Isomorphisms of the integral classical groups and their congruence subgroups”, Amer. J. Math., 97:4 (1975), 865–887 | DOI | MR

[294] A. J. Hahn, “Cayley algebras and the automorphisms of $\mathrm{PO}'_8(V)$ and $\mathrm P\Omega_8(V)$”, Amer. J. Math., 98:4 (1976), 953–987 | DOI | MR | Zbl

[295] A. J. Hahn, “Cayley algebras and the isomorphisms of the orthogonal groups over arithmetic and local domains”, J. Algebra, 45 (1977), 210–246 | DOI | MR | Zbl

[296] A. J. Hahn, “Isomorphisms theory for orthogonal groups over arbitrary integral domains”, J. Algebra, 51 (1978), 233–287 | DOI | MR | Zbl

[297] A. J. Hahn, “Category equivalences and linear groups over rings”, J. Algebra, 77:2 (1982), 505–543 | DOI | MR | Zbl

[298] A. J. Hahn, “The finite presentability of linear groups”, Contemp. Math., 82 (1989), 23–33 | DOI | MR | Zbl

[299] A. J. Hahn, D. G. James, B. Weisfeiler, “Homomorphisms of algebraic and classical groups: a survey”, Canad. Math. Soc. Proc., 4 (1984), 249–296 | MR | Zbl

[300] A. J. Hahn, O. T. O'Meara, The classical groups and $K$-theory, Springer, Berlin et al., 1989 | MR | Zbl

[301] R. Hazrat, “Dimension theory and non-stable $\mathrm K_1$ of quadratic module”, $\mathrm K$-theory, 27 (2002), 293–327 | DOI | MR

[302] R. Hazrat, V. Petrov, N. Vavilov, “Relative subgroups in Chevalley groups”, J. $\mathrm K$-theory, 5:3 (2010), 603–618 | DOI | MR | Zbl

[303] R. Hazrat, A. Stepanov, N. Vavilov, Zhang Zuhong, “The yoga of commutators”, Zap. nauchn. semin. POMI, 387, 2011, 53–82 | MR

[304] R. Hazrat, N. Vavilov, “$\mathrm K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[305] R. Hazrat, N. Vavilov, “Bak's work on $\mathrm K$-theory of rings (with an appendix by Max Karoubi)”, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl

[306] R. Hazrat, N. Vavilov, Zhang Zuhong, “Relative unitary commutator calculus, and applications”, J. Algebra, 343:1 (2011), 107–137 | DOI | MR | Zbl

[307] R. Hazrat, N. Vavilov, Zhang Zuhong, “Relative Commutator Calculus in Chevalley groups”, J. Algebra, 2012 (to appear) , 32 pp. | MR

[308] R. Hazrat, Zhang Zuhong, “Generalized commutator formula”, Comm. Algebra, 38:4 (2011), 1441–1454 | DOI | MR

[309] R. Herman, L. N. Vaserstein, “The stable range of $C^*$-algebras”, Invent. Math., 77:3 (1984), 553–555 | DOI | MR

[310] J. A. Hermida-Alonso, “Linear algebra over commutative rings”, Handbook of Algebra, v. 3, 2003, 3–61 | DOI | MR | Zbl

[311] A. C. Hibbard, “A new presentation of hyperbolic classical groups over a division ring”, J. Algebra, 165:2 (1994), 360–379 | DOI | MR | Zbl

[312] A. C. Hibbard, “The generation of $U_{2n}(R,\Lambda)$ and the presentation of $O_{2n}^+(R)$”, J. Algebra, 172:3 (1995), 819–829 | DOI | MR | Zbl

[313] E. K. Hinson, “Paths of unimodular vectors”, J. Algebra, 142:1 (1991), 58–75 | DOI | MR | Zbl

[314] E. K. Hinson, “Word length in elementary matrices”, J. Algebra, 142:1 (1991), 76–80 | DOI | MR | Zbl

[315] E. K. Hinson, “On Vaserstein's power operation on elementary orbits”, Comm. Algebra (to appear)

[316] Hua Lokeng, I. Reiner, “Automorphisms of the unimodular group”, Trans. Amer. Math. Soc., 71 (1951), 331–348 | DOI | MR | Zbl

[317] J. Huebschmann, “Stem extensions of the infinite general linear group and large Steinberg groups”, Lecture Notes Math., 966, 1980, 108–111 | DOI | MR

[318] J. E. Humphreys, “On the automorphisms of infinite Chevalley groups”, Canad. J. Math., 21:1 (1969), 908–911 | DOI | MR | Zbl

[319] J. Hurrelbrink, “Endlich präsentierte arithmetische Gruppen und $\mathrm K_2$ über Laurent-Polynomringen”, Math. Ann., 225 (1977), 123–129 | DOI | MR | Zbl

[320] J. Hurrelbrink, “The elements of $\mathrm K_2(\mathbb Z_S)$”, Manuscripta Math., 24 (1978), 173–177 | DOI | MR | Zbl

[321] J. Hurrelbrink, “Endlich präsentierte arithmetische Gruppen im Funktionenkörperfall”, Math. Ann., 225:2 (1977), 123–129 | DOI | MR | Zbl

[322] J. Hurrelbrink, “On $\mathrm K_2(\mathcal O)$ and presentations of $\mathrm{SL}_n(\mathcal O)$ in the real quadratic case”, J. reine angew. Math., 319 (1980), 213–220 | DOI | MR | Zbl

[323] J. Hurrelbrink, “On the size of certain $K$-groups”, Comm. Algebra, 10 (1982), 1873–1889 | DOI | MR | Zbl

[324] J. Hurrelbrink, “On presentations of $\mathrm{SL}_n(\mathbb Z_S)$”, Comm. Algebra, 11:9 (1983), 937–947 | DOI | MR | Zbl

[325] J. Hurrelbrink, U. Rehmann, “Eine endliche Präsentation der Gruppe $\mathrm G_2(\mathbb Z)$”, Math. Z., 141 (1975), 243–251 | DOI | MR | Zbl

[326] J. Hurrelbrink, U. Rehmann, “Zur endliche Präsentation von Chevalleygruppen über den euklidischen imaginär-quadratischen Zahlringen”, Arch. Math., 27:1 (1976), 123–133 | DOI | MR | Zbl

[327] K. Hutchinson, “A new approach to Matsumoto's theorem”, $K$-theory, 4:2 (1990), 181–200 | DOI | MR | Zbl

[328] K. Hutchinson, “Conditions under which $K_2(\mathcal O_F)$ is not generated by Dennis–Stein symbols”, Acta Arithm., 89 (1999), 189–199 | MR | Zbl

[329] F. Ischebeck, “Hauptidealringe mit nichttrivialer $\mathrm{SK}_1$-Gruppe”, Arch. Math., 35 (1980), 138–139 | DOI | MR | Zbl

[330] H. Ishibashi, “Generators of a symplectic group over a local valuation domain”, J. Algebra, 53:1 (1978), 125–128 | DOI | MR | Zbl

[331] H. Ishibashi, “Generators of $O_n(V)$ over a quasi semilocal semihereditary domain”, Comm. Algebra, 7:10 (1979), 1043–1064 | DOI | MR | Zbl

[332] H. Ishibashi, “Generators of $\mathrm{Sp}_n(V)$ over a quasi semilocal semihereditary domain”, Comm. Algebra, 7:16 (1979), 1673–1683 | DOI | MR | Zbl

[333] H. Ishibashi, “Generators of $U_n(V)$ over a quasi semilocal semihereditary domain”, J. Algebra, 60:1 (1979), 199–203 | DOI | MR | Zbl

[334] H. Ishibashi, “Generators of $\mathrm{Sp}_n(V)$ over a quasi semilocal semihereditary ring”, J. Pure Appl. Algebra, 22:2 (1981), 121–129 | DOI | MR | Zbl

[335] H. Ishibashi, “Generators of orthogonal groups over valuation rings”, Canad. J. Math., 33:1 (1981), 116–128 | DOI | MR | Zbl

[336] H. Ishibashi, “Structure of $O(V)$ over full rings”, J. Algebra, 75:1 (1982), 1–9 | DOI | MR | Zbl

[337] H. Ishibashi, “Involutory expressions of elements in $\mathrm{GL}_n(\mathbb Z)$ and $\mathrm{SL}_n(\mathbb Z)$”, Linear Al-gebra Applic., 219 (1995), 165–177 | DOI | MR | Zbl

[338] D. G. James, “Unitary groups over local rings”, J. Algebra, 52:2 (1978), 354–363 | DOI | MR | Zbl

[339] D. G. James, “Projective geometry over rings with stable range condition”, Linear Multilinear Algebra, 23:4 (1988), 299–304 | DOI | MR | Zbl

[340] D. G. James, W. C. Waterhouse, B. Weisfeiler, “Abstract homomorphisms of algebraic groups: problems and bibliography”, Commun. Algebra, 9 (1981), 95–114 | DOI | MR | Zbl

[341] W. Jehne, “Die Struktur der symplektischen Gruppen über lokalen und dedekindschen Ringen”, Sitzungber. Heidelberg Akad. Wiss. Math. Naturwiss., 3 (1962/64), 189–235 | MR

[342] G. A. Jones, “Congruence and non-congruence subgroups of the modular group: a survey”, London Math. Soc. Lect. Notes Ser., 121, Cambridge Univ. Press, 1986, 223–234 | MR

[343] S. Jose, R. A. Rao, “A local global principle for the elementary unimodular vector group”, Contemp. Math., 390 (2005), 119–125 | DOI | MR | Zbl

[344] S. Jose, R. A. Rao, “A structure theorem for the elementary unimodular vector group”, Trans. Amer. Math. Soc., 358:7 (2005), 3097–3112 | DOI | MR

[345] B. Kahn, “$\mathrm K_2$ d'un anneau Euclidien”, J. Pure Appl. Algebra, 34 (1984), 255–257 | DOI | MR | Zbl

[346] W. van der Kallen, “Le $\mathrm K_2$ des nombres duaux”, C. R. Acad. Sci. Paris Ser. A–B, 273 (1971), 1204–1207 | MR | Zbl

[347] W. van der Kallen, “The Schur multipliers of $\mathrm{SL}(3,\mathbb Z)$ and $\mathrm{SL}(4,\mathbb Z)$”, Math. Ann., 212 (1974), 47–49 | DOI | MR | Zbl

[348] W. van der Kallen, “Injective stability for $\mathrm K_2$”, Lecture Notes Math., 551, 1976, 77–154 | DOI | MR | Zbl

[349] W. van der Kallen, “Another presentation for Steinberg groups”, Indag. Math., 39:4 (1977), 304–312 | MR

[350] W. van der Kallen, “The $\mathrm K_2$ of rings with many units”, Ann. Sci. École Norm. Sup. (4), 10 (1977), 473–515 | MR | Zbl

[351] W. van der Kallen, “Homology stability for linear groups”, Invent. Math., 60 (1980), 269–295 | DOI | MR | Zbl

[352] W. van der Kallen, “Stability for $\mathrm K_2$ of Dedekind rings of arithmetic type”, Lecture Notes Math., 854, 1981, 217–248 | DOI | MR | Zbl

[353] W. van der Kallen, “$\mathrm{SL}_3(\mathbb C[x])$ does not have bounded word length”, Springer Lecture Notes Math., 966, 1982, 357–361 | DOI | MR | Zbl

[354] W. van der Kallen, “A group structure on certain orbit sets of unimodular rows”, J. Algebra, 82 (1983), 363–397 | DOI | MR | Zbl

[355] W. van der Kallen, “Vaserstein's prestabilization theorem over commutative rings”, Comm. Algebra, 15:3 (1987), 657–663 | DOI | MR | Zbl

[356] W. van der Kallen, “A module structure on certain orbit sets of unimodular rows”, J. Pure Appl. Algebra, 57:3 (1989), 281–316 | DOI | MR | Zbl

[357] W. van der Kallen, “Presenting $\mathrm K_2$ with generic symbols”, Algebraic $K$-theory: Connections with Geometry and Topology, 1989, 509–516 | MR | Zbl

[358] W. van der Kallen, “From Mennicke symbol to Euler class groups”, Algebra, Arithmetic and Geometry (Mumbai, 2000), Tata Inst. Fund. Res. Stud. Math., 16, Tata Institute of Fundamental Research, Mumbai, 2002, 341–354 | MR | Zbl

[359] W. van der Kallen, H. Maazen, J. Stienstra, “A presentation of some $\mathrm K_2(n,R)$”, Bull. Amer. Math. Soc., 81 (1975), 934–936 | DOI | MR | Zbl

[360] W. van der Kallen, B. Magurn, L. N. Vaserstein, “Absolute stable rank and Witt cancellation for non-commutative rings”, Invent. Math., 91 (1988), 543–557 | DOI | MR

[361] W. van der Kallen, M. R. Stein, “On the Schur multiplier of Steinberg and Chevalley groups over commutative rings”, Math. Z., 155 (1977), 83–94 | DOI | MR | Zbl

[362] W. van der Kallen, J. Stienstra, “The relative $\mathrm K_2$ of truncated polynomial rings”, J. Pure Appl. Algebra, 34 (1984), 277–289 | DOI | MR | Zbl

[363] I. Kaplansky, “Elementary divisors and modules”, Trans. Amer. Math. Soc., 66 (1949), 464–491 | DOI | MR | Zbl

[364] M. Kassabov, “Kazhdan constants for $\mathrm{SL}_n(\mathbb Z)$”, Int. J. Alg. Comput., 15:5–6 (2005), 971–995 | DOI | MR | Zbl

[365] M. Kassabov, N. Nikolov, “Universal lattices and property tau”, Invent. Math., 165 (2006), 209–224 | DOI | MR | Zbl

[366] M. Kassabov, M. Sapir, “Nonlinearity of matrix groups”, J. Topol. Anal., 1:3 (2009), 251–260 | DOI | MR | Zbl

[367] S. A. Katre, R. A. Rao, D. N. Sheth, “Solving linear systems via Pfaffians”, Linear Algebra Applic., 430 (2009), 968–975 | DOI | MR | Zbl

[368] K. Keller, Nicht endlich erzeugbare arithmetische Gruppen über Funktionenkorper, Thesis, Univ. Frankfurt, 1980

[369] M. Kervaire, “Multiplicateurs de Schur et $K$-theory”, Essays on Topology and Related Topics, Mém. dédiés à G. de Rham, Springer-Verlag, Berlin et al., 1970, 212–225 | DOI | MR

[370] F. Keune, “$(t^2-t)$-reciprocities of the affine line and Matsumoto's theorem”, Invent. Math., 28 (1975), 185–192 | DOI | MR | Zbl

[371] F. Keune, “The relativisation of $\mathrm K_2$”, J. Algebra, 54:1 (1978), 159–177 | DOI | MR | Zbl

[372] F. Keune, “Another presentation for the $\mathrm K_2$ of a local domain”, J. Pure Appl. Algebra, 22 (1981), 131–141 | DOI | MR | Zbl

[373] F. Keune, “The $\mathrm K_2$ of a 1-fold stable ring”, Lecture Notes Math., 1046, 1984, 193–228 | DOI | MR | Zbl

[374] G. Kiralis, S. Krstić, J. McCool, “Finite presentability of $\Phi_n(G)$, $\mathrm{GL}_n(\mathbb Z G)$ and their elementary subgroups and Steinberg groups”, Proc. London Math. Soc., 73:3 (1996), 575–622 | DOI | MR | Zbl

[375] F. Kirchheimer, “Die Normalteiler der symplektischen Gruppen über beliebigen lokalen Ringen”, J. Algebra, 50 (1978), 228–241 | DOI | MR | Zbl

[376] F. Kirchheimer, “Über explizite Präsentation Hilbertscher Modulgruppen zu totalreellen Körpern der Klassenzahl eins”, J. reine angew. Math., 321 (1981), 120–137 | DOI | MR | Zbl

[377] F. Kirchheimer, J. Wolfart, “Explizite Präsentation gewisser Hilbertscher Modulgruppen durch Erzeugende und Relationen”, J. reine angew. Math., 315 (1980), 139–173 | DOI | MR | Zbl

[378] B. Kirkwood, B. McDonald, “The Witt ring of a full ring”, J. Algebra, 64:1 (1980), 148–166 | DOI | MR | Zbl

[379] B. Kirkwood, B. McDonald, “The orthogonal and the special orthogonal groups over a full ring”, J. Algebra, 68:1 (1981), 121–143 | DOI | MR | Zbl

[380] B. Kirkwood, B. McDonald, “The symlectic group over a ring with one in its stable range”, Pacific J. Math., 92:1 (1981), 111–125 | DOI | MR | Zbl

[381] S. Klasa, “On Steinberg groups”, Lecture Notes Math., 353, 1973, 131–138 | DOI | MR | Zbl

[382] W. Klingenberg, “Linear groups over local rings”, Bull. Amer. Math. Soc., 66 (1960), 294–296 | DOI | MR | Zbl

[383] W. Klingenberg, “Lineare Gruppen über lokalen Ringen”, Amer. J. Math., 83:1 (1961), 137–153 | DOI | MR | Zbl

[384] W. Klingenberg, “Lineare Gruppen über verallgemeinernen Bewertungsringen”, Abh. Math. Semin. Univ. Hamburg, 25:1–2 (1961), 23–35 | DOI | MR | Zbl

[385] W. Klingenberg, “Projektive Geometrie und lineare Algebra über verallgemeinernen Bewertungsringen”, Proc. Coll. Algebr. Topol. Found. Geom., London, 1962, 99–107 | MR | Zbl

[386] W. Klingenberg, “Die Struktur der linearen Gruppen über einem nichtkommutativen lokalen Ring”, Arch. Math., 13 (1962), 73–81 | DOI | MR | Zbl

[387] W. Klingenberg, “Symplectic groups over local rings”, Amer. J. Math., 85:2 (1963), 232–240 | DOI | MR | Zbl

[388] A. Klyachko, “Automorphisms and isomorphisms of Chevalley groups and algebras”, J. Algebra, 322 (2010), 2608–2619 | DOI | MR

[389] M. Kneser, “Normal subgroups of integral orthogonal groups”, Lecture Notes Math., 108, 1969, 67–71 | DOI | MR | Zbl

[390] M. Kneser, “Normalteiler ganzzahliger Spingruppen”, J. reine angew. Math., 311–312 (1979), 191–214 | DOI | MR | Zbl

[391] M. Kneser, “Erzeugung ganzzahliger orthogonaler Gruppen durch Spiegelungen”, Math. Ann., 255:4 (1981), 453–462 | DOI | MR | Zbl

[392] K. P. Knudson, “The homology of $\mathrm{SL}_2(F[t,t^{-1}])$”, J. Algebra, 180 (1996), 87–101 | DOI | MR | Zbl

[393] K. P. Knudson, “The homology of special linear groups over polynomial rings”, Ann. Sci. École Norm. Sup. (4), 30:3 (1997), 385–415 | MR

[394] K. P. Knudson, “Unstable homotopy invariance and the homology of $\mathrm{SL}_2(\mathbb Z[t])$”, J. Pure Appl. Algebra, 148 (2000), 255–266 | DOI | MR | Zbl

[395] K. P. Knudson, “Homology and finiteness properties of $\mathrm{SL}_2(\mathbb Z[t,t^{-1}])$”, Algebr. Geom. Topol., 8 (2008), 2253–2261 | DOI | MR | Zbl

[396] K. P. Knudson, “Congruence subgroups and twisted cohomology of $\mathrm{SL}_n(F[t])$. I”, J. Algebra, 207:2 (1998), 695–721 ; “II”, Comm. Algebra, 29:12 (2001), 5465–5475 | DOI | MR | Zbl | DOI | MR | Zbl

[397] M.-A. Knus, Quadratic and hermitian forms over rings, Springer Verlag, Berlin et al., 1991 | MR | Zbl

[398] M. Kolster, “On injective stability for $\mathrm K_2$”, Lecture Notes Math., 966, 1982, 128–168 | DOI | MR | Zbl

[399] M. Kolster, “Improvement of $\mathrm K_2$-stability under transitive actions of elementary groups”, J. Pure Appl. Algebra, 24 (1982), 277–282 | DOI | MR | Zbl

[400] M. Kolster, “General symbols and presentations of elementary linear groups”, J. reine angew. Math., 353 (1984), 132–164 | DOI | MR | Zbl

[401] M. Kolster, “$\mathrm K_2$ of non-commutative local rings”, J. Algebra, 95:1 (1985), 173–200 | DOI | MR | Zbl

[402] S. Krstić, J. McCool, “The non-finite presentability of $\mathrm{IA}(F_3)$ and $\mathrm{GL}_n(\mathrm{Int}[t,t^{-1}]$”, Invent. Math., 129 (1997), 595–606 | DOI | MR | Zbl

[403] S. Krstić, J. McCool, “Presenting $\mathrm{GL}_n(k\langle T\rangle)$”, J. Pure Appl. Algebra, 141 (1999), 175–183 | DOI | MR | Zbl

[404] M. Krusemeyer, “Fundamental groups, algebraic $K$-theory, and a problem of Abjyankar”, Invent. Math., 19 (1973), 15–47 | DOI | MR | Zbl

[405] M. Krusemeyer, “Skewly completable rows and a theorem of Swan and Towber”, Comm. Algebra, 4:4 (1975), 657–663 | MR

[406] S. Krutelevich, “Jordan algebras, exceptional groups and quadratic composition”, J. Algebra, 314 (2007), 924–977 | DOI | MR | Zbl

[407] N. H. J. Lacroix, “Two-dimensional linear groups over local rings”, Canad. J. Math., 21 (1969), 106–135 | DOI | MR | Zbl

[408] N. H. J. Lacroix, C. Levesque, “Sur les sous-groupes normaux de $\mathrm{SL}_2$ sur un anneau local”, Canad. Math. Bull., 26 (1983), 209–219 | DOI | MR | Zbl

[409] T. J. Laffey, “Expressing unipotent matrices over rings as products of involutions”, Irish Math. Soc. Bull., 40 (1998), 24–30 | MR | Zbl

[410] J. Landin, I. Reiner, “Automorphisms of the general linear group over a principal ideal domain”, Ann. Math., 65 (1957), 519–526 | DOI | MR | Zbl

[411] J. Landin, I. Reiner, “Automorphisms of the two-dimensional general linear group over a Euclidean ring”, Proc. Amer. Math. Soc., 9 (1958), 209–216 | MR | Zbl

[412] W. G. Leavitt, “Modules without invariant basis number”, Proc. Amer. Math. Soc., 8 (1957), 322–328 | DOI | MR | Zbl

[413] W. G. Leavitt, “The module type of a ring”, Trans. Amer. Math. Soc., 103 (1962), 113–130 | DOI | MR | Zbl

[414] R. Lee, R. Szczarba, “On the homology and cohomology of congruence subgroups”, Invent. Math., 33 (1976), 15–53 | DOI | MR | Zbl

[415] H. W. Lenstra, “$K_2$ of a global field consists of symbols”, Lecture Notes in Mathematics, 551, Springer-Verlag, 1976, 69–73 | DOI | MR

[416] H. W. Lenstra, “Grothendieck groups of Abelian group rings”, J. Pure Appl. Algebra, 20 (1981), 173–193 | DOI | MR | Zbl

[417] A. Leutbecher, “Euklidischer Algorithmus und die Gruppe $\mathrm{GL}_2$”, Math. Ann., 231 (1978), 269–285 | DOI | MR | Zbl

[418] Fuan Li, “The structure of symplectic group over arbitrary commutative rings”, Acta Math. Sinica (N.S.), 3:3 (1987), 247–255 | DOI | MR | Zbl

[419] Fuan Li, “Local behaviour of systems $(\phi,\alpha,\sigma)$”, Kexue Tongbao, 33 (1988), 1445–1447 (in Chinese) | MR

[420] Fuan Li, “The structure of orthogonal groups over arbitrary commutative rings”, Chinese Ann. Math. Ser. B, 10:3 (1989), 341–350 | MR | Zbl

[421] Fuan Li, “Finite presentability of Steinberg groups over group rings”, Acta Math. Sinica (New Series), 5:4 (1989), 297–301 | DOI | MR | Zbl

[422] Fuan Li, “Homological meaning of systems $(\phi,\alpha,\sigma)$”, Acta Math. Sinica, 7:4 (1991), 348–353 | DOI | MR | Zbl

[423] Fuan Li, Zunxian Li, “Automorphisms of $\mathrm{SL}_3(R)$, $\mathrm{GL}_3(R)$”, Contemp. Math., 82 (1984), 47–52

[424] Fuan Li, Zunxian Li, “Isomorphisms of $\mathrm{GL}_3$ over commutative rings”, Scientia Sinica Ser. A, 31 (1988), 7–14 | MR | Zbl

[425] Fuan Li, Mulan Liu, “Generalized sandwich theorem”, $\mathrm K$-Theory, 1 (1987), 171–184 | DOI | MR

[426] Fuan Li, Hongshuo Ren, “The automorphisms of two-dimensional linear groups over commutative rings”, Chinese Ann. Math. Ser. B, 10:1 (1989), 50–57 | MR | Zbl

[427] B. Liehl, “On the group $\mathrm{SL}_2$ over orders of arithmetic type”, J. reine angew. Math., 323 (1981), 153–171 | DOI | MR | Zbl

[428] B. Liehl, “Beschränkte Wortlänge in $\mathrm{SL}_2$”, Math. Z., 186 (1984), 509–524 | DOI | MR | Zbl

[429] L. Lifschitz, A. Rapinchuk, “On abstract homomorphisms of Chevalley groups with non-reductive image. I”, J. Algebra, 242:1 (2001), 374–399 | DOI | MR | Zbl

[430] Zongzhu Lin, “The isomorphism of linear groups over local rings”, Acta Math. Sinica (New Series), 27:4 (1984), 528–531 | MR | Zbl

[431] Shaowu Liu, Luqun Wang, “Homomorphisms between symplectic groups”, Chinese Ann. Math. Ser. B, 14:3 (1993), 287–296 | MR | Zbl

[432] J. L. Loday, “Cohomologie et groupe de Steinberg relatifs”, J. Algebra, 54:1 (1978), 178–202 | DOI | MR | Zbl

[433] D. Loukanidis, V. K. Murty, Bounded generation for $\mathrm{SL}_n$ ($n\ge2$) and $\mathrm{Sp}_n$ ($n\ge 1$), Preprint, 1995 | MR

[434] A. W. Lubotzky, “Free quotients and the congruence kernel of $\mathrm{SL}_2$”, J. Algebra, 77 (1982), 411–418 | DOI | MR | Zbl

[435] A. Yu. Luzgarev, A. V. Stepanov, N. A. Vavilov, “Calculations in exceptional groups over rings”, Zap. nauchn. semin. POMI, 373, 2009, 48–72 | MR

[436] H. Maazen, Homology stability for the general linear group, Ph. D. Thesis, Utrecht, 1979

[437] H. Maazen, J. Stienstra, “A presentation for $K_2$ of split radical pairs”, J. Pure Appl. Algebra, 10 (1977), 271–294 | DOI | MR

[438] B. A. Magurn, “$\mathrm{SK}_1$ of dihedral groups”, J. Algebra, 51:2 (1978), 399–415 | DOI | MR | Zbl

[439] B. A. Magurn, “Explicit $K_1$ of some modular group rings”, J. Pure Appl. Algebra, 206 (2006), 3–20 | DOI | MR | Zbl

[440] B. A. Magurn, W. van der Kallen, L. N. Vaserstein, “Absolute stable rank and Witt cancellation for noncommutative rings”, Invent. Math., 91 (1988), 525–542 | DOI | MR | Zbl

[441] K. E. Martin, “Orthogonal groups over $\mathfrak R((\pi))$”, Amer. J. Math., 95 (1973), 59–79 | DOI | MR | Zbl

[442] A. W. Mason, “A note on subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, J. London Math. Soc., 11 (1974), 509–512 | DOI | MR

[443] A. W. Mason, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators. II”, J. reine angew. Math., 322 (1981), 118–135 | DOI | MR | Zbl

[444] A. W. Mason, “A further note on subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Arch. Math., 37:5 (1981), 401–405 | DOI | MR | Zbl

[445] A. W. Mason, “On non-normal subgroups of $\mathrm{GL}_n(A)$ which are normalized by elementary matrices”, Ill. J. Math., 28 (1984), 125–138 | MR | Zbl

[446] A. W. Mason, “Anomalous normal subgroups of $\mathrm{SL}_2(K[x])$”, Quart. J. Math., 36 (1985), 345–358 | DOI | MR | Zbl

[447] A. W. Mason, “Standard subgroups of $\mathrm{GL}_2(A)$”, Proc. Edin. Math. Soc., 30 (1987), 341–349 | DOI | MR | Zbl

[448] A. W. Mason, “On $\mathrm{GL}_2(A)$ of a local ring in which 2 is not a unit”, Canad. Math. Bull., 30 (1987), 165–176 | DOI | MR | Zbl

[449] A. W. Mason, “Free quotients of congruence subgroups of $\mathrm{SL}_2$ over a Dedekind ring of arithmetic type contained in a function field”, Math. Proc. Cambridge Phil. Soc., 101 (1987), 421–429 | DOI | MR | Zbl

[450] A. W. Mason, “Free quotients of congruence subgroups of $\mathrm{SL}_2$ over a coordinate ring”, Math. Z., 198 (1988), 39–51 | DOI | MR | Zbl

[451] A. W. Mason, “On $\mathrm{GL}_2(A)$ of a local ring in which 2 is not a unit. II”, Comm. Algebra, 17 (1989), 511–551 | DOI | MR | Zbl

[452] A. W. Mason, “Non-standard, normal subgroups and non-normal, standard subgroups of the modular group”, Canad. Math. Bull., 32:1 (1989), 109–113 | DOI | MR

[453] A. W. Mason, “Subnormal subgroups of $E_n(R)$ have no free nonabelian quotients, when $n\ge3$”, Proc. Edinburgh Math. Soc., 119:1 (1991), 113–119 | DOI | MR | Zbl

[454] A. W. Mason, “The order and level of a subgroup of $\mathrm{GL}_2$ over a Dedekind ring of arithmetic type”, Proc. Royal Soc. Edinburgh Sect. A, 119:3–4 (1991), 191–212 | DOI | MR | Zbl

[455] A. W. Mason, “Normal subgroups of $\mathrm{SL}_2(k[t])$ with or without free quotients”, J. Algebra, 150:2 (1992), 281–295 | DOI | MR | Zbl

[456] A. W. Mason, “Congruence hulls in $\mathrm{SL}_n$”, J. Pure Appl. Algebra, 89:3 (1993), 255–257 | DOI | MR

[457] A. W. Mason, “Quotients of the congruence kernels of $\mathrm{SL}_2$ over arithmetic Dedekind domains”, Israel J. Math., 91 (1995), 77–91 | DOI | MR | Zbl

[458] A. W. Mason, “Unipotent matrices, modulo elementary matrices, in $\mathrm{SL}_2$ over a coordinate ring”, J. Algebra, 203 (1998), 134–155 | DOI | MR | Zbl

[459] A. W. Mason, “The generalization of Nagao's theorem to other subrings of the rational function field”, Comm. Algebra, 31:11 (2003), 5199–5242 | DOI | MR | Zbl

[460] A. W. Mason, “Stabilziers of edges in general linear groups acting on trees”, J. Group Theory, 4 (2001), 97–108 | DOI | MR | Zbl

[461] A. W. Mason, A. Schweizer, “Non-standard automorphisms and non-congruence subgroups of $\mathrm{SL}_2$ over Dedekind domains contained in function fields”, J. Pure Appl. Algebra, 205 (2006), 189–209 | DOI | MR | Zbl

[462] A. W. Mason, W. W. Stothers, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Invent. Math., 23 (1974), 327–346 | DOI | MR | Zbl

[463] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup., 2:4 (1969), 1–62 | MR | Zbl

[464] B. R. McDonald, Geometric algebra over local rings, Marcel Dekker, N.Y., 1976 | MR | Zbl

[465] B. R. McDonald, “Automorphisms of $\mathrm{GL}_n(R)$”, Trans. Amer. Math. Soc., 215 (1976), 145–159 | MR | Zbl

[466] B. R. McDonald, “Automorphisms of $\mathrm{GL}_n(R)$”, Trans. Amer. Math. Soc., 246 (1978), 155–171 | MR | Zbl

[467] B. R. McDonald, “$\mathrm{GL}_2$ of a ring with many units”, Comm. Algebra, 8 (1980), 869–888 | DOI | MR | Zbl

[468] B. R. McDonald, “Projectivities for rings with many units”, Comm. Algebra, 9:2 (1981), 195–204 | DOI | MR | Zbl

[469] B. R. McDonald, “$\mathrm{Aut}(\mathrm{GL}_2)$ for rings with many units”, Comm. Algebra, 9:2 (1981), 205–220 | DOI | MR | Zbl

[470] B. R. McDonald, Linear algebra over commutative rings, Marcel Dekker, N.Y., 1984 | MR | Zbl

[471] B. R. McDonald, “Metric geometry over local global commutative rings”, Rings and geometry, 1985, 391–415 | DOI | MR | Zbl

[472] B. R. McDonald, B. Hershberger, “The orthogonal group over a full ring”, J. Algebra, 51 (1978), 536–549 | DOI | MR | Zbl

[473] G. McHardy, Endliche und fast-endliche Präsentierbarkeit einiger arithmetischer Gruppen, Thesis, Univ. Frankfurt, 1982 | Zbl

[474] L. McQueen, D. R. McDonald, “Automorphisms of the symplectic group over a local ring”, J. Algebra, 30 (1974), 485–495 | DOI | MR | Zbl

[475] P. Menal, J. Moncasi, “On regular rings with stable range 2”, J. Pure Appl. Algebra, 24 (1982), 25–40 | DOI | MR | Zbl

[476] P. Menal, J. Moncasi, “$\mathrm K_1$ of von Neumann regular rings”, J. Pure Appl. Algebra, 33:3 (1984), 295–312 | DOI | MR | Zbl

[477] P. Menal, L. N. Vaserstein, “On subgroups of $\mathrm{GL}_2$ over non-commutative local rings which are normalized by elementary matrices”, Math. Ann., 285 (1989), 221–231 | DOI | MR | Zbl

[478] P. Menal, L. N. Vaserstein, “On subgroups of $\mathrm{GL}_2$ over Banach algebras and von Neumann regular rings which are normalized by elementary matrices”, J. Pure Appl. Algebra, 64:2 (1990), 149–162 | DOI | MR | Zbl

[479] P. Menal, L. N. Vaserstein, “On the structure of $\mathrm{GL}_2$ over stable range one rings”, J. Algebra, 136:1 (1991), 99–120 | DOI | MR

[480] J. Mennicke, “A remark on the congruence subgroup problem”, Math. Scand., 86 (2000), 206–222 | MR | Zbl

[481] J. S. Milne, Algebraic groups and arithmetic groups, 2006, 219 pp. http://www.jmilne.org/math/

[482] B. Mirzaii, Homology of classical groups and $K$-theory, Ph. D. Thesis, Utrecht Univ., 2005, 83 pp.

[483] B. Mirzaii, “Homology stability for unitary groups. II”, $K$-Theory, 36:3–4 (2005), 305–326 | DOI | MR | Zbl

[484] B. Mirzaii, “Homology of $\mathrm{GL}_n$ over algebraically closed fields”, J. London Math. Soc., 76 (2007), 605–621 | DOI | MR | Zbl

[485] B. Mirzaii, “Homology of $\mathrm{GL}_n$: injectivity conjecture for $\mathrm{GL}_4$”, Math. Ann., 304:1 (2008), 159–184 | MR

[486] B. Mirzaii, “Third homology of general linear groups”, J. Algebra, 320:5 (2008), 1851–1877 | DOI | MR | Zbl

[487] B. Mirzaii, Bloch–Wigner theorem over rings with many units, 2009, 18 pp., arXiv: 0807.2039v2[math.KT] | MR

[488] B. Mirzaii, A note on the third cohomology of $\mathrm{GL}_2$, 2009, 9 pp., arXiv: 0907.0876v1[math.KT]

[489] B. Mirzaii, W. van der Kallen, Homology stability for symplectic groups, 2001, 21 pp., arXiv: math/0110163v1[math.KT]

[490] B. Mirzaii, W. van der Kallen, “Homology stability for unitary groups”, Documenta Math., 7 (2002), 143–166 | MR | Zbl

[491] J. Morita, “On the group structure of rank one $K_2$ of some $\mathbb Z_S$”, Bull. Soc. Math. Belg., 42 (1990), 561–575 | MR | Zbl

[492] D. W. Morris, “Bounded generation of $\mathrm{SL}(n,A)$ (after D. Carter, G. Keller, and E. Paige)”, New York J. Math., 13 (2007), 383–421 | MR | Zbl

[493] K. N. Moss, “Homology of $\mathrm{SL}(n,\mathbb Z[\frac1p])$”, Duke Math. J., 47:4 (1980), 803–818 | DOI | MR | Zbl

[494] T. Mulders, “Generating the tame and wild kernels by Dennis–Stein symbols”, $K$-Theory, 5 (1992), 449–470 | DOI | MR | Zbl

[495] V. K. Murty, “Bounded and finite generation of arithmetic groups”, Number Theory (Halifax, 1994), CMS Conf. Proc., 15, Amer. Math. Soc., Providence, RI, 1995, 249–261 | MR | Zbl

[496] H. Nagao, “On $\mathrm{GL}_2(R[x])$”, J. Inst. Polytechn. Osaka City Univ. Ser. A, 10 (1959), 117–121 | MR | Zbl

[497] K. R. Nagarajan, M. P. Devaasahayam, T. Soundararajan, “Products of three triangular matrices over commutative rings”, Linear Algebra Applic., 348 (2002), 1–6 | DOI | MR | Zbl

[498] M. Newman, Integral matrices, Academic Press, N.Y., 1972, 224 pp. | MR | Zbl

[499] M. Newman, “Matrix completion theorems”, Proc. Amer. Math. Soc., 94 (1985), 39–45 | DOI | MR | Zbl

[500] M. Newman, “Unimodular commutators”, Proc. Amer. Math. Soc., 101 (1987), 605–609 | DOI | MR | Zbl

[501] O. T. O'Meara, “Finiteness on $\mathrm{SL}_n/\mathrm{TL}_n$ over Hasse domains for $n\ge4$”, Math. Z., 86:4 (1964), 273–284 | DOI | MR | Zbl

[502] O. T. O'Meara, “On the finite generation of linear groups over Hasse domains”, J. reine angew. Math., 217 (1965), 79–108 | MR | Zbl

[503] O. T. O'Meara, “The automorphisms of the linear groups over any integral domain”, J. reine angew. Math., 223 (1966), 56–100 | DOI | MR | Zbl

[504] O. T. O'Meara, “The automorphisms of the standard symplectic group over any integral domain”, J. reine angew. Math., 230 (1968), 104–138 | MR | Zbl

[505] O. T. O'Meara, “The automorphisms of the orthogonal groups and their congruence subgroups over arithmetic domains”, J. reine angew. Math., 238 (1969), 169–206 | MR | Zbl

[506] O. T. O'Meara, “Group-theoretic characterization of transvections using CDC”, Math. Z., 110 (1969), 385–394 | DOI | MR | Zbl

[507] O. T. O'Meara, “The integral classical groups and their automorphisms”, Proc. Symp. Pure Math., 20 (1971), 76–85 | DOI | MR | Zbl

[508] O. T. O'Meara, “A general isomorphism theory for linear groups”, J. Algebra, 44 (1977), 93–142 | DOI | MR | Zbl

[509] O. T. O'Meara, “A survey of the isomorphism theory of the classical groups”, Ring theory and algebra, v. III, Marcel Dekker, N.Y., 1980, 225–242 | MR

[510] O. T. O'Meara, H. Zassenhaus, “The automorphisms of the linear congruence groups over Dedekind domains”, J. Number. Theory, 1 (1969), 211–221 | DOI | MR | Zbl

[511] A. A. Panin, “Intermediate semigroups are groups”, Semigroup Forum (to appear) | MR

[512] H. Park, “A realization algorithm for $\mathrm{SL}_2(R[x_1,\ldots,x_m])$ over the Euclidean domain”, SIAM J. Matrix Anal. Appl., 21:1 (1999), 178–184 | DOI | MR | Zbl

[513] H. Park, C. Woodburn, “An algorithmic proof of Suslin's stability theorem for polynomial rings”, J. Algebra, 178:1 (1995), 277–298 | DOI | MR | Zbl

[514] V. M. Petechuk, “Isomorphisms between linear groups over division rings”, Canad. J. Math., 45:5 (1993), 997–1008 | DOI | MR | Zbl

[515] V. M. Petechuk, “Stability structure of linear group over rings”, Mat. Studii, 16:1 (2001), 13–24 | MR | Zbl

[516] A. Pilkington, “The $E_2(R)$-normalized subgroups of $\mathrm{GL}_2(R)$. I”, J. Algebra, 172:2 (1995), 584–611 | DOI | MR | Zbl

[517] E. Plotkin, “Stability theorems for $\mathrm K$-functors for Chevalley groups”, Proc. Conf. Non-Associative Algebras and Related Topics (Hiroshima – 1990), World Sci., London et al., 1991, 203–217 | MR | Zbl

[518] E. Plotkin, “On the stability of $\mathrm K_1$-functor for Chevalley groups of type $\mathrm E_7$”, J. Algebra, 210 (1998), 67–85 | DOI | MR | Zbl

[519] E. Plotkin, M. R. Stein, N. Vavilov, Stability of $\mathrm K$-functors modeled on Chevalley groups, revisited (to appear)

[520] B. Pollak, “On the structure of local orthogonal groups”, Amer. J. Math., 88 (1966), 763–780 | DOI | MR | Zbl

[521] B. Pollak, “Orthogonal groups over $\mathbb R((\pi))$”, Amer. J. Math., 89 (1968), 214–230 | DOI | MR

[522] J. Pomfret, B. R. McDonald, “Automorphisms of $\mathrm{GL}_n(R)$, $R$ a local ring”, Trans. Amer. Math. Soc., 173 (1972), 379–388 | MR | Zbl

[523] R. A. Rankin, The modular group and its subgroups, Lectures at Ramanujan Institute, Madras, 1968 | MR

[524] R. A. Rao, “An elementary transformation of a special unimodular vector to its top coefficient vector”, Proc. Amer. Math. Soc., 93:1 (1985), 21–24 | DOI | MR | Zbl

[525] R. A. Rao, “The Bass–Quillen conjecture in dimension three but characteristic $\neq2,3$ via a question of A. Suslin”, Invent. Math., 93 (1988), 609–618 | DOI | MR | Zbl

[526] R. A. Rao, On some actions of stably elementary matrices on alternating matrices, Preprint, TIFR, 1989, 40 pp.

[527] R. A. Rao, “On completing unimodular polynomial vectors of length three”, Trans. Amer. Math. Soc., 325:1 (1991), 231–239 | DOI | MR | Zbl

[528] R. A. Rao, “An abelian group structure on orbits of “unimodular squares” in dimension 3”, J. Algebra, 210 (1998), 216–224 | DOI | MR | Zbl

[529] R. A. Rao, W. der Kallen, “Improved stability for $\mathrm{SK}_1$ and $\mathrm{WNS}_d$ of non-singular affine algebra”, Astérisque, 85 (1994), 411–420

[530] A. Rapinchuk, “Congruence subgroup problem for algebraic groups: old and new”, Journées Arithmétiques, 1991, Astérisque, 209, 1992, 73–84 | MR | Zbl

[531] I. A. Rapinchuk, On linear representations of Chevalley groups over commutative rings, 2010, 31 pp., arXiv: 1005.0422v1[math.GR] | MR

[532] N. S. Rege, “On certain classical groups over Hasse domains”, Math. Z., 102 (1967), 120–157 | DOI | MR | Zbl

[533] U. Rehmann, Präsentationen von Chevalleygruppen über $k[t]$, Preprint, Univ. Bielefeld, 1975, 30 pp.

[534] U. Rehmann, “Zentrale Erweiterungen der speziellen linearen Gruppe eines Schiefkörpers”, J. reine angew. Math., 301 (1978), 77–104 | DOI | MR | Zbl

[535] U. Rehmann, “Kommutatoren in $\mathrm{GL}_n(D)$”, Lecture Notes in Mathematics, 778, Springer-Verlag, 1980, 117–123 | DOI

[536] U. Rehmann, “Central extensions of $\mathrm{SL}_2$ over division rings and metaplectic problem”, Contemp. Math., 55:2 (1986), 561–607 | DOI | MR | Zbl

[537] U. Rehmann, C. Soulé, “Finitely presented groups of matrices”, Lecture Notes Math., 551, Springer-Verlag, 1976, 164–169 | DOI | MR

[538] U. Rehmann, U. Stuhler, “On $\mathrm K_2$ of finite dimensional division algebras over arithmetical fields”, Invent. Math., 50 (1978), 75–90 | DOI | MR | Zbl

[539] I. Reiner, “A new type of automorphism of the general linear group over a ring”, Ann. Math., 66 (1957), 461–466 | DOI | MR | Zbl

[540] C. Riehm, “The structure of symplectic group over a valuation ring”, Amer. J. Math., 88 (1966), 106–128 | DOI | MR | Zbl

[541] C. R. Riehm, “Orthogonal groups over the integers of a local field. I”, Amer. J. Math., 88 (1966), 763–780 ; “II”, Amer. J. Math., 89 (1967), 549–577 | DOI | MR | DOI | MR | Zbl

[542] M. Roitman, “Completing unimodular rows to invertible matrices”, J. Algebra, 49 (1977), 206–211 | DOI | MR | Zbl

[543] M. Roitman, “On unimodular rows”, Proc. Amer. Math. Soc., 95 (1985), 184–188 | DOI | MR | Zbl

[544] L. Rowen, Ring theory, 2011 | MR

[545] A. Sasane, “Stable ranks of Banach algebras of operator-valued analytic functions”, Compl. Anal. Operator Theory, 3 (2009), 323–330 | DOI | MR | Zbl

[546] J.-P. Serre, “Amalgames et points fixes”, Lecture Notes Math., 372, 1974, 633–640 | DOI | MR | Zbl

[547] J.-P. Serre, Trees, Springer-Verlag, Berlin et al., 1980 | MR | Zbl

[548] Y. Shalom, “Bounded generation and Kazhdan property (T)”, Inst. Hautes Études Sci. Publ. Math., 90 (1999), 145–168 | DOI | MR | Zbl

[549] Y. Shalom, “Explicit Kazhdan constants for representations of semisimple and arithmetic groups”, Ann. Inst. Fourier (Grenoble), 50:3 (2000), 833–863 | DOI | MR | Zbl

[550] Y. Shalom, “The algebraisation of Kazhdan property (T)”, Intern. Congress Mathematicians, v. II, 2006, 1283–1310 | MR | Zbl

[551] R. W. Sharpe, “On the structure of the unitary Steinberg group”, Ann. Math., 96:3 (1972), 444–479 | DOI | MR | Zbl

[552] R. W. Sharpe, “On the structure of the Steinberg group $\mathrm{St}(\Lambda)$”, J. Algebra, 68 (1981), 453–467 | DOI | MR | Zbl

[553] J. R. Silvester, “On the $\mathrm K_2$ of the free associative algebra”, J. Algebra, 26 (1973), 35–56 | MR | Zbl

[554] J. R. Silvester, “A presentation of the $\mathrm{GL}_n$ of a semi-local ring”, Lecture Notes Math., 966, 1982, 244–260 | DOI | MR | Zbl

[555] A. Sivatsky, A. Stepanov, “On the word length of commutators in $\mathrm{GL}_n(R)$”, $K$-theory, 17 (1999), 295–302 | DOI | MR

[556] Th. Skolem, Diophantische Gleichungen, Springer, Berlin, 1938 | Zbl

[557] R. E. Solazzi, “The automorphisms of certain subgroups of $\mathrm{PGL}_n(V)$”, Ill. J. Math., 16 (1972), 330–348 | MR | Zbl

[558] C. Soulé, “The cohomology of $\mathrm{SL}_3(\mathbb Z)$”, Topology, 17 (1978), 1–22 | DOI | MR | Zbl

[559] C. Soulé, “Presentation finie des groupes de Chevalley a coefficients dans un anneau”, Publ. Math. Univ. Paris. VII, 1, 1978, 147–155 | MR

[560] C. Soulé, “Chevalley groups over polynomial rings”, Homological group theory (Durham, 1977), London Math. Soc. Lect. Notes, 36, Cambridge Univ. Press, 1979, 359–367 | MR

[561] C. Soulé, “An introduction to arithmetic groups”, Frontiers in Number Theory, Physics, and Geometry, v. II, Springer, Berlin et al., 2007, 247–276 | DOI | MR | Zbl

[562] S. Splitthoff, “Finite presentability of Steinberg groups and related Chevalley groups”, Contemp. Math., 55, Part II, 1986, 635–687 | DOI | MR | Zbl

[563] J. T. Stafford, “Stable structure of non-commutative Noetherian rings”, J. Algebra, 47 (1977), 244–267 | DOI | MR | Zbl

[564] J. T. Stafford, “On the stable range of right Noetherian rings”, Bull. London Math. Soc., 13 (1981), 39–41 | DOI | MR | Zbl

[565] J. T. Stafford, “Absolute stable rank and quadratic forms over noncommutative rings”, $K$-Theory, 4 (1990), 121–130 | DOI | MR | Zbl

[566] A. Stavrova, “Normal structure of maximal parabolic subgroups in Chevalley groups over commutative rings”, Algebra Coll., 16:4 (2009), 631–648 | DOI | MR | Zbl

[567] M. R. Stein, “Relativising functors on rings and algebraic $\mathrm K$-theory”, J. Algebra, 19:1 (1971), 140–152 | DOI | MR | Zbl

[568] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl

[569] M. R. Stein, “Stability theorems for $\mathrm K_1$, $\mathrm K_2$ and related functors modeled on Chevalley groups”, Japan J. Math., 4:1 (1978), 77–108 | MR | Zbl

[570] M. R. Stein, R. K. Dennis, “$\mathrm K_2$ of radical ideals and semi-local rings revisited”, Lecture Notes Math., 342, 1972, 281–303 | MR

[571] R. Steinberg, “Générateurs, relations et revêtements des groupes algébriques”, Colloque sur la théorie des groupes algébriques (Bruxelles, 1962), Guthier-Villar, Paris, 1962, 113–127 | MR

[572] R. Steinberg, “Some consequences of elementary relations of $\mathrm{SL}_n$”, Contemp. Math., 45 (1985), 335–350 | DOI | MR | Zbl

[573] A. Stepanov, Universal localisation in algebraic groups, 2010, (to appear), arXiv: http://alexei.stepanov.spb.ru/papers/formal.pdf

[574] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, K-Theory, 19 (2000), 109–153 | DOI | MR | Zbl

[575] A. Stepanov, N. Vavilov, “On the length of commutators in Chevalley groups”, Israel Math. J., 185 (2011), 253–276 | DOI | MR | Zbl

[576] U. Stuhler, “Zur Frage der endlichen Präsentierbarkeit gewisser arithmetischer Gruppen im Funktionenkörperfall”, Math. Ann., 224 (1976), 217–232 | DOI | MR | Zbl

[577] U. Stuhler, “Homological properties of certain arithmetic groups in the function field case”, Invent. Math., 57 (1980), 263–281 | DOI | MR | Zbl

[578] A. A. Suslin, “Stability in algebraic $\mathrm K$-theory”, Lecture Notes Math., 966, 1982, 304–333 | DOI | MR | Zbl

[579] A. A. Suslin, “Mennicke symbols and their applications in the $\mathrm K$-theory of fields”, Lecture Notes Math., 966, 1982, 334–356 | DOI | MR | Zbl

[580] A. A. Suslin, “Homology of $\mathrm{GL}_n$, characteristic classes and Milnor's $K$-theory”, Lecture Notes Math., 1046, 1984, 357–384 | DOI | MR

[581] K. Suzuki, “On the automorphisms of Chevalley groups over $p$-adic integer rings”, Kumamoto J. Sci. Math., 16:1 (1984), 39–47 | MR | Zbl

[582] R. G. Swan, “Generators and relations for certain special linear groups”, Bull. Amer. Math. Soc., 74 (1968), 576–581 | DOI | MR | Zbl

[583] R. G. Swan, “Generators and relations for certain special linear groups”, Adv. Math., 6 (1971), 1–77 | DOI | MR | Zbl

[584] R. G. Swan, L. N. Vaserstein, “On the absolute stable range of rings of continuous functions”, Contemp. Math., 55, Part II, 1986, 689–692 | DOI | MR | Zbl

[585] G. Taddei, “Invariance du sous-groupe symplectique élémentaire dans le groupe symplectique sur un anneau”, C. R. Acad. Sci Paris Sér. I, 295:2 (1982), 47–50 | MR | Zbl

[586] G. Taddei, “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55, Part II, 1986, 693–710 | DOI | MR | Zbl

[587] Tang Guoping, “Hermitian groups and $\mathrm K$-theory”, $\mathrm K$-Theory, 13:3 (1998), 209–267 | DOI | MR | Zbl

[588] Tang Xiangpu, “An Jianbei. The structure of symplectic groups over semi-local rings”, Acta Math. Sinica (New Series), 1 (1985), 1–15 | DOI

[589] O. I. Tavgen', “Bounded generation of normal and twisted Chevalley groups over the rings of $S$-integers”, Contemp. Math., 131:1 (1992), 409–421 | DOI | MR | Zbl

[590] J. Tits, “Homomorphismes et automorphismes “abstraits” de groupes algébriques et arithmétiques”, Congr. Intern. Math. (Nice, 1970), Gauthier-Villars, Paris, 1971, 349–355 | MR

[591] J. Tits, “Homomorphisms “abstraits” de groupes de Lie”, Convegno di Gruppi e Loro Rappresentazioni INDAM (Roma, 1972), Academic Press, London, 1974, 479–499 | MR

[592] J. Tits, “Systèmes générateurs de groupes de congruences”, C. R. Acad. Sci. Paris Sér. A, 283 (1976), 693–695 | MR

[593] M. F. Trittler, “Die Normalteiler symplektischer Gruppen über Bewertungsringen mit einer Restklassenkörper-Charakteristik $\neq2$”, Manuscripta Math., 103 (2000), 117–134 | DOI | MR | Zbl

[594] R. Tuler, “Subgroups of $\mathrm{SL}_2(\mathrm{Int})$ generated by elementary matrices”, Proc. Roy. Soc. Edinburgh Ser. A, 88:1–2 (1981), 43–47 | DOI | MR | Zbl

[595] L. N. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring”, Springer Lecture Notes Math., 854, 1981, 454–465 | MR

[596] L. N. Vaserstein, “Bass's first stable range condition”, J. Pure Appl. Algebra, 34:2–3 (1984), 319–330 | DOI | MR | Zbl

[597] L. N. Vaserstein, “Classical groups over rings”, Canad. Math. Soc. Conf. Proc., 4 (1984), 131–140 | MR | Zbl

[598] L. N. Vaserstein, “Normal subgroups of the general linear groups over von Neumann rings”, Proc. Amer. Math. Soc., 96:2 (1986), 209–214 | DOI | MR | Zbl

[599] L. N. Vaserstein, “Normal subgroups of the general linear groups over Banach algebras”, J. Pure Appl. Algebra, 41 (1986), 99–112 | DOI | MR | Zbl

[600] L. N. Vaserstein, “An answer to the question of M. Newman on matrix completion”, Proc. Amer. Math. Soc., 97:2 (1986), 189–196 | DOI | MR | Zbl

[601] L. N. Vaserstein, “The subnormal structure of general linear groups”, Math. Proc. Cambridge Phil. Soc., 99 (1986), 425–431 | DOI | MR | Zbl

[602] L. N. Vaserstein, “Operations on orbits of unimodular vectors”, J. Algebra, 100 (1986), 456–461 | DOI | MR | Zbl

[603] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 36:5 (1986), 219–230 | DOI | MR

[604] L. N. Vaserstein, “Computation of $\mathrm K_1$ via Mennicke symbols”, Comm. Algebra, 15 (1987), 611–656 | DOI | MR | Zbl

[605] L. N. Vaserstein, “Subnormal subgroups of the general linear groups over Banach algebras”, J. Pure Appl. Algebra, 52 (1988), 187–195 | DOI | MR | Zbl

[606] L. N. Vaserstein, “Normal subgroups of orthogonal groups over commutative rings”, Amer. J. Math., 110:5 (1988), 955–973 | DOI | MR | Zbl

[607] L. N. Vaserstein, “Reduction of a matrix depending on parameters to a diagonal form by addition operators”, Proc. Amer. Math. Soc., 103:3 (1988), 741–746 | DOI | MR | Zbl

[608] L. N. Vaserstein, “Normal subgroups of classical groups over rings and gauge groups”, Contemp. Math., 83 (1989), 451–459 | DOI | MR | Zbl

[609] L. N. Vaserstein, “Normal subgroups of symplectic groups over rings”, $K$-Theory, 2:5 (1989), 647–673 | DOI | MR | Zbl

[610] L. N. Vaserstein, “Linear algebra and algebraic $K$-theory”, Contemp. Math., 82 (1989), 191–197 | DOI | MR

[611] L. N. Vaserstein, “The subnormal structure of general linear groups over rings”, Math. Proc. Cambridge Phil. Soc., 108:2 (1990), 219–229 | DOI | MR | Zbl

[612] L. N. Vaserstein, “On normal subgroups of $\mathrm{GL}_2$ over rings with many units”, Compositio Math., 74:2 (1990), 157–164 | MR | Zbl

[613] L. N. Vaserstein, “On the Whitehead determinant for semi-local rings”, J. Algebra, 283 (2005), 690–699 | DOI | MR | Zbl

[614] L. N. Vaserstein, “Polynomial parametrization for the solution of Diophantine equations and arithmetic groups”, Ann. Math., 171:2 (2010), 979–1009 | DOI | MR | Zbl

[615] L. N. Vaserstein, B. A. Magurn, “Prestabilization for $\mathrm K_1$ of Banach algebras”, Linear Algebra Appl., 95 (1987), 69–96 | DOI | MR | Zbl

[616] L. N. Vaserstein, E. Wheland, “Factorization of invertible matrices over rings of stable rank one”, J. Austral Math. Soc. Ser. A, 48:3 (1990), 455–460 | DOI | MR | Zbl

[617] L. N. Vaserstein, E. Wheland, “Commutators and companion matrices over rings of stable rank 1”, Linear Algebra Appl., 142 (1990), 263–277 | DOI | MR | Zbl

[618] L. N. Vaserstein, You Hong, “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105:1 (1995), 93–106 | DOI | MR

[619] N. Vavilov, “A note on the subnormal structure of general linear groups”, Math. Proc. Cambridge Phil. Soc., 107:2 (1990), 193–196 | DOI | MR | Zbl

[620] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-Associative Algebras and Related Topics (Hiroshima – 1990), World Sci., London et al., 1991, 219–335 | MR | Zbl

[621] N. Vavilov, “Intermediate subgroups in Chevalley groups”, Proc Conf. Groups of Lie Type and their Geometries (Como – 1993), Cambridge Univ. Press, 1995, 233–280 | DOI | MR | Zbl

[622] N. Vavilov, “A third look at weight diagrams”, Rendiconti del Sem. Mat. Univ. Padova, 204:1 (2000), 201–250 | MR

[623] N. Vavilov, “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, Intern. J. Algebra Comput., 17:5–6 (2007), 1–16 | MR

[624] N. Vavilov, E. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Applicandae Math., 45:1 (1996), 73–113 | DOI | MR | Zbl

[625] F. D. Veldkamp, “Projective planes over rings of stable rank 2”, Geom. dedic., 11 (1981), 285–308 | DOI | MR | Zbl

[626] F. D. Veldkamp, “Projective geometry over finite rings”, Quaderni del Semin. di Geom. Combinat. Univ. Roma I “La Sapienza”, 92 (1989), 1–39

[627] K. Vogtmann, “Spherical posets and homology stability for $O_{n,n}$”, Topology, 20:2 (1981), 119–132 | DOI | MR | Zbl

[628] T. Vorst, “The general linear group of polynomial rings over regular rings”, Comm. Algebra, 9 (1981), 499–509 | DOI | MR | Zbl

[629] J. B. Wagoner, “On $\mathrm K_2$ of the Laurent polynomial ring”, Amer. J. Math., 93 (1971), 123–138 | DOI | MR | Zbl

[630] J. B. Wagoner, “Stability for homology of the general linear group of a local ring”, Topology, 15 (1976), 417–423 | DOI | MR | Zbl

[631] Zhexian Wan, “On the automorphisms of linear groups over a non-commutative Euclidean ring of characteristic $\neq2$”, Sci. Record, 1:1 (1957), 5–8 | MR

[632] Zhexian Wan, “On the automorphisms of linear groups over a non-commutative principal ideal domain of characteristic $\neq2$”, Sci. Sinica, 7 (1958), 885–933 | MR | Zbl

[633] Zhexian Wan, “Some recent progress on classical groups in China”, Contemp. Math., 82 (1989), 221–230 | DOI | MR | Zbl

[634] Zhexian Wan, Hongshuo Ren, “Automorphisms of two-dimensional linear groups over local rings of characteristic 2”, Chinese Ann. Math., 4:4 (1983), 419–434 | MR

[635] Zhexian Wan, Xiaolong Wu, “On the second commutator subgroup of $\mathrm{PGL}_2(\mathrm{Int})$”, Math. Rep. Acad. Sci. Canada, 11:6 (1980), 303–308 | MR

[636] Chunsen Wang, “Automorphisms of linear groups over a class of rings”, Chinese Ann. Math., 4:2 (1983), 263–269 | MR | Zbl

[637] Luqun Wang, “On the standard form of normal subgroups of linear groups over rings”, Chinese Ann. Math., 5:2 (1984), 229–238 | MR | Zbl

[638] Luqun Wang, Yongzheng Zhang, “$\mathrm{GL}_2$ over full rings”, Chinese Ann. Math., 8:4 (1987), 434–439 | MR | Zbl

[639] Renfa Wang, Hong You, “The structure of symplectic groups over semi-local rings”, Chinese Ann. Math. ser. A, 5 (1984), 33–40 (in Chinese) | MR | Zbl

[640] W. P. Wardlaw, “Defining relations for certain integrally parametrized Chevalley groups”, Pacif. J. Math., 40 (1972), 235–250 | DOI | MR | Zbl

[641] W. C. Waterhouse, Introduction to affine group schemes, Springer-Verlag, N.Y. et al., 1979 | MR | Zbl

[642] W. C. Waterhouse, “Automorphisms of $\mathrm{GL}_n(R)$”, Proc. Amer. Math. Soc., 79 (1980), 347–351 | MR | Zbl

[643] W. C. Waterhouse, “Automorphisms of quotients of $\prod\mathrm{GL}(n_i)$”, Pacif. J. Math., 102 (1982), 221–233 | DOI | MR | Zbl

[644] W. C. Waterhouse, “Automorphisms of $\det(X_{ij})$: the group scheme approach”, Adv. Math., 65:2 (1987), 171–203 | DOI | MR | Zbl

[645] C. Weibel, “Mennicke-type symbols for relative $\mathrm K_2$”, Lecture Notes Math., 1046, 1984, 451–464 | DOI | MR | Zbl

[646] B. Weisfeiler, “On abstract homorphisms of anisotropic algebraic groups over real closed fields”, J. Algebra, 60 (1979), 485–519 | DOI | MR | Zbl

[647] B. Weisfeiler, “Monomorphisms between subgroups of groups of type $\mathrm G_2$”, J. Algebra, 68 (1981), 306–334 | DOI | MR | Zbl

[648] B. Weisfeiler, “Abstract isomorphisms of simple algebraic groups split by quadratic extension”, J. Algebra, 68 (1981), 335–368 | DOI | MR | Zbl

[649] B. Weisfeiler, “Abstract homomorphisms of big subgroups of algebraic groups”, Topics in the theory of algebraic groups, Notre Dame Math. Lectures, 10, 1982, 135–181 | MR | Zbl

[650] M. Wendt, On fibre sequence in motivic homotopy theory, Thesis, Univ. Leipzig, 2007, 165 pp. | Zbl

[651] M. Wendt, “$\mathbb A^1$-homotopy of Chevalley groups”, J. K-Theory, 5:2 (2010), 245–287 | DOI | MR | Zbl

[652] K. Weston, “On nilpotent class 2 groups and the Steinberg groups $\mathrm{St}(3,R)$”, Arch. Math., 45 (1985), 207–210 | DOI | MR | Zbl

[653] J. S. Wilson, “The normal and subnormal structure of general linear groups”, Proc. Cambridge Philos. Soc., 71 (1972), 163–177 | DOI | MR | Zbl

[654] D. Witte, “Products of similar matrices”, Proc. Amer. Math. Soc., 126:4 (1998), 1005–1015 | DOI | MR | Zbl

[655] D. Wright, “The amalgamated free product structure of $\mathrm{GL}_2(K[x_1,\ldots,x_n])$”, Bull. Amer. Math. Soc., 82:5 (1976), 724–726 | DOI | MR | Zbl

[656] D. Wright, “The amalgamated free product structure of $\mathrm{GL}_2(k[X_1,\ldots,X_n])$ and the weak Jacobian theorem for two variables”, J. Pure Appl. Algebra, 12:3 (1978), 235–251 | DOI | MR | Zbl

[657] S. Yagunov, “On the homology of $\mathrm{GL}_n$ and the higher pre-Bloch groups”, Canad. J. Math., 52:6 (2000), 1310–1338 | DOI | MR | Zbl

[658] C. R. Yohe, “Triangular and diagonal forms for matrices over commutative noetherian rings”, J. Algebra, 6 (1967), 335–368 | DOI | MR | Zbl

[659] Hong You, “Prestabilization for $\mathrm{K_1U}^\varepsilon$ of $\Lambda$-$2$-fold rings”, Chinese Sci. Bull., 37:5 (1992), 357–361 | Zbl

[660] Hong You, “Stabilization of unitary groups over polynomial rings”, Chinese Ann. Math. Ser. B, 16:2 (1995), 177–190 | MR | Zbl

[661] Hong You, “Subgroups of classical groups normalised by relative elementary groups”, J. Pure Appl. Algebra (to appear) , 16 pp. | MR

[662] Hong You, Sheng Chen, “Subrings in quadratic fields which are not universal for $\mathrm{GE}_2$”, Quart. J. Math., 54 (2003), 233–241 | DOI | MR | Zbl

[663] Hong You, Shengkui Ye, “Prestability for quadratic $\mathrm K_1$ of $\Lambda$-$1$-fold stable rings”, J. Algebra, 319 (2008), 2072–2081 | DOI | MR | Zbl

[664] D. C. Youla, P. F. Pickel, “The Quillen–Suslin theorem and the structure of $n$-dimensional elementary polynomial matrices”, IEEE Trans. Circuits Systems, 31 (1984), 513–517 | DOI | MR

[665] Jiangguo Zha, “An embedding theorem between special linear groups over any fields”, Chinese Ann. Math. Ser. B, 16:4 (1995), 477–486 | MR

[666] Jiangguo Zha, “Homomorphisms between the Chevalley groups over any field of characeristic zero”, Comm. Algebra, 24:2 (1996), 659–703 | DOI | MR

[667] Jiangguo Zha, “Determination of homomorphisms between linear groups of the same degree over division rings”, J. London Math. Soc., 53:3 (1996), 479–488 | DOI | MR

[668] Haiquan Zhang, Luqun Wang, “Normal subgroups of symplectic groups over $\Phi$-surjective rings”, Acta Math. Sinica, 25 (1985), 270–278 (in Chinese) | MR

[669] Yongzheng Zhang, “The structure of two-dimensional linear groups over semi-local rings”, Kexue Tongbao, 26:23 (1981), 1469 (in Chinese)

[670] Zuhong Zhang, Lower $K$-theory of unitary groups, Doktorarbeit, Univ. Belfast, 2007, 67 pp.

[671] Zuhong Zhang, “Stable sandwich classification theorem for classical-like groups”, Math. Proc. Cambridge Phil. Soc., 143:3 (2007), 607–619 | MR | Zbl

[672] Zuhong Zhang, “Subnormal structure of non-stable unitary groups over rings”, J. Pure Appl. Algebra, 214 (2010), 622–628 | DOI | MR | Zbl

[673] Fang Zhou, Li Li, “A theorem on the generators of the general linear group over a local ring $R$”, Dongbei Shida Xuebao, 1983, no. 2, 123–127 (in Chinese) | MR

[674] R. Zimmert, “Zur $\mathrm{SL}_2$ der ganzen Zahlen eines imaginärquadratischen Zahlkörpers”, Inv. Math., 19 (1973), 73–81 | DOI | MR | Zbl