Stable autoequivalences of selfinjective algebras of finite representation type
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 5-19
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work we compute the subgroup of the group of autoequivalences of stable category for all standard selfinjective algebras of finite representation type (which we call the group of monomial autoequivalences), also we compute the quotient group of this group modulo natural isomorphisms. If we impose some restrictions on the type of the algebra this subgroup coincides with the whole group of autoequivalences. Furthermore, we generalize these results to the case of mesh-categories associated to the quiver of the form $\mathbb ZT/G,$ where $T$ is an arbitrary tree and the group $G$ is generated by Auslander–Reiten translate.
@article{ZNSL_2011_394_a0,
author = {M. A. Antipov and A. O. Zvonareva},
title = {Stable autoequivalences of selfinjective algebras of finite representation type},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--19},
publisher = {mathdoc},
volume = {394},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a0/}
}
TY - JOUR AU - M. A. Antipov AU - A. O. Zvonareva TI - Stable autoequivalences of selfinjective algebras of finite representation type JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 5 EP - 19 VL - 394 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a0/ LA - ru ID - ZNSL_2011_394_a0 ER -
M. A. Antipov; A. O. Zvonareva. Stable autoequivalences of selfinjective algebras of finite representation type. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 5-19. http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a0/