Stable autoequivalences of selfinjective algebras of finite representation type
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 5-19
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work we compute the subgroup of the group of autoequivalences of stable category for all standard selfinjective algebras of finite representation type (which we call the group of monomial autoequivalences), also we compute the quotient group of this group modulo natural isomorphisms. If we impose some restrictions on the type of the algebra this subgroup coincides with the whole group of autoequivalences. Furthermore, we generalize these results to the case of mesh-categories associated to the quiver of the form $\mathbb ZT/G,$ where $T$ is an arbitrary tree and the group $G$ is generated by Auslander–Reiten translate.
@article{ZNSL_2011_394_a0,
author = {M. A. Antipov and A. O. Zvonareva},
title = {Stable autoequivalences of selfinjective algebras of finite representation type},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--19},
year = {2011},
volume = {394},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a0/}
}
M. A. Antipov; A. O. Zvonareva. Stable autoequivalences of selfinjective algebras of finite representation type. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 22, Tome 394 (2011), pp. 5-19. http://geodesic.mathdoc.fr/item/ZNSL_2011_394_a0/
[1] Chr. Riedtmann, “Algebren, Darstellungsköcher, Überlagerungen und zurück”, Comment. Math. Helv., 55 (1980), 199–224 | DOI | MR
[2] D. Simson, A. Skowronski, Elements of the Representation Theory of Associative Algebras, v. II, London Mathematical Society Student Texts, Tubes and Concealed Algebras of Euclidean type, Cambridge University Press, 2007 | MR | Zbl
[3] I. Assem, D. Simson, A. Skowronski, Elements of the Representation Theory of Associative Algebras, v. I, London Mathematical Society Student Texts, Techniques of Representation Theory, Cambridge University Press, 2005 | MR | Zbl
[4] O. Bretscher, Chr. Läser, Chr. Riedtmann, “Selfinjective and simply connected algebras”, Manuscripta Math., 36 (1981), 253–307 | DOI | MR | Zbl