Rayleigh waves in an anisotropic elastic medium and impedance
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 125-143
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper, the impedance operator, its properties and relationships with the Rayleigh waves in anisotropic media are considered. Zero eigenvalues of the impedance operator determine the Rayleigh waves in the anisotropic media. This property give us a possibility to prove the uniqueness theorem for the Rayleigh wave in any anisotropic medium close to isotropic one.
@article{ZNSL_2011_393_a8,
author = {A. P. Kachalov},
title = {Rayleigh waves in an anisotropic elastic medium and impedance},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {125--143},
year = {2011},
volume = {393},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a8/}
}
A. P. Kachalov. Rayleigh waves in an anisotropic elastic medium and impedance. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 125-143. http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a8/
[1] Chi-Sing Man, W. Y. Lu, “Towards an acoustoelastic theory for measurements of residual stress”, J. of Elasticity, 17 (1982), 159–182
[2] Kazumi Tanumi, Chi-Sing Man, Mojia Huang, Gen Nakamura, “Surface imprdance tensors of textured polycristals”, Academic J., 67:2 (2002), 131–147 | MR | Zbl
[3] Kazumi Tanuma, Chi-Sing Man, Gen Nakamura, Shengzhang Wang, “Perturbation and dispersion of Rayleigh waves in prestressed anisotropic elastic media”, Taiwan-Japan Joint Workshop on Inverse Problem. Inst. Math., Academia Sinca, Taipei, 2008