Rayleigh waves in an anisotropic elastic medium and impedance
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 125-143

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the impedance operator, its properties and relationships with the Rayleigh waves in anisotropic media are considered. Zero eigenvalues of the impedance operator determine the Rayleigh waves in the anisotropic media. This property give us a possibility to prove the uniqueness theorem for the Rayleigh wave in any anisotropic medium close to isotropic one.
@article{ZNSL_2011_393_a8,
     author = {A. P. Kachalov},
     title = {Rayleigh waves in an anisotropic elastic medium and impedance},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {125--143},
     publisher = {mathdoc},
     volume = {393},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a8/}
}
TY  - JOUR
AU  - A. P. Kachalov
TI  - Rayleigh waves in an anisotropic elastic medium and impedance
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 125
EP  - 143
VL  - 393
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a8/
LA  - ru
ID  - ZNSL_2011_393_a8
ER  - 
%0 Journal Article
%A A. P. Kachalov
%T Rayleigh waves in an anisotropic elastic medium and impedance
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 125-143
%V 393
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a8/
%G ru
%F ZNSL_2011_393_a8
A. P. Kachalov. Rayleigh waves in an anisotropic elastic medium and impedance. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 125-143. http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a8/