@article{ZNSL_2011_393_a7,
author = {A. Ya. Kazakov},
title = {Euler integral symmetry and deformed hypergeometric equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {111--124},
year = {2011},
volume = {393},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a7/}
}
A. Ya. Kazakov. Euler integral symmetry and deformed hypergeometric equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 111-124. http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a7/
[1] H. Bateman, A. Erdelyi, Higher Transcendental functions, v. 1, McCraw-Hill Book Company Inc., New York, 1953 | MR
[2] K. Iwasaki, H. Kimura, S. Shimomura, M. Yosida, From Gauss to Painleve: a modern theory of special functions, Vieweg, Braunshweig, 1991 | MR | Zbl
[3] S. Yu. Slavyanov, W. Lay, Special functions: A unified theory based on singularities, Oxford university press, Oxford–New York, 2000 | MR | Zbl
[4] A. V. Shanin, R. V. Craster, “Removing false singular points as a method of solving ordinary differential equations”, Euro. J. Appl. Math., 13 (2002), 617–639 | DOI | MR | Zbl
[5] Y. Sibuya, Linear differential equations in the complex domain: problem of analytic continuation, AMS, Providence, 1985
[6] A. Ya. Kazakov, “Integral symmetry, integral invariants and monodromy of ordinary differential equations”, Theor. Math. Phys., 116:3 (1998), 991–1000 | DOI | MR | Zbl
[7] A. Ya. Kazakov, “The central two-point connection problem for the reduced confluent Heun equation”, J. Phys. A: Math. Gen., 39 (2006), 2339–2347 | DOI | MR
[8] M. Kohno, K. Tsurumaru, H. Haruki, “Monodromy groups for certain hypergeometric systems”, Kumamoto J. Math., 8 (1995), 101–145 | MR | Zbl
[9] Y. Haraoka, “Integral representations of solutions of differential equations free from accessory parameters”, Adv. Math., 169 (2002), 187–240 | DOI | MR | Zbl