Euler integral symmetry and deformed hypergeometric equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 111-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Euler integral symmetry for the hypergeometric system of linear differential equations is described. Reduction of the hypergeometric system leads to integral symmetry for the deformed hypergeometric equation. Analytic continuation of the corresponding contour integral is used to obtain the corresponding symmetry of the connection matrix. These results give the possibility to calculate the connection matrix of the deformed hypergeometric equation.
@article{ZNSL_2011_393_a7,
     author = {A. Ya. Kazakov},
     title = {Euler integral symmetry and deformed hypergeometric equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {111--124},
     year = {2011},
     volume = {393},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a7/}
}
TY  - JOUR
AU  - A. Ya. Kazakov
TI  - Euler integral symmetry and deformed hypergeometric equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 111
EP  - 124
VL  - 393
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a7/
LA  - ru
ID  - ZNSL_2011_393_a7
ER  - 
%0 Journal Article
%A A. Ya. Kazakov
%T Euler integral symmetry and deformed hypergeometric equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 111-124
%V 393
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a7/
%G ru
%F ZNSL_2011_393_a7
A. Ya. Kazakov. Euler integral symmetry and deformed hypergeometric equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 111-124. http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a7/

[1] H. Bateman, A. Erdelyi, Higher Transcendental functions, v. 1, McCraw-Hill Book Company Inc., New York, 1953 | MR

[2] K. Iwasaki, H. Kimura, S. Shimomura, M. Yosida, From Gauss to Painleve: a modern theory of special functions, Vieweg, Braunshweig, 1991 | MR | Zbl

[3] S. Yu. Slavyanov, W. Lay, Special functions: A unified theory based on singularities, Oxford university press, Oxford–New York, 2000 | MR | Zbl

[4] A. V. Shanin, R. V. Craster, “Removing false singular points as a method of solving ordinary differential equations”, Euro. J. Appl. Math., 13 (2002), 617–639 | DOI | MR | Zbl

[5] Y. Sibuya, Linear differential equations in the complex domain: problem of analytic continuation, AMS, Providence, 1985

[6] A. Ya. Kazakov, “Integral symmetry, integral invariants and monodromy of ordinary differential equations”, Theor. Math. Phys., 116:3 (1998), 991–1000 | DOI | MR | Zbl

[7] A. Ya. Kazakov, “The central two-point connection problem for the reduced confluent Heun equation”, J. Phys. A: Math. Gen., 39 (2006), 2339–2347 | DOI | MR

[8] M. Kohno, K. Tsurumaru, H. Haruki, “Monodromy groups for certain hypergeometric systems”, Kumamoto J. Math., 8 (1995), 101–145 | MR | Zbl

[9] Y. Haraoka, “Integral representations of solutions of differential equations free from accessory parameters”, Adv. Math., 169 (2002), 187–240 | DOI | MR | Zbl