Wave field from a point source on an open boundary of half plane Biot
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 101-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Initial boundary value problem of wave propagation in half plane filled with fluid-saturated porous solid is considered. Biot's medium is isotropic homogeneous and pores are opened on the boundary. Using complex analysis techniques, explicit formulae for components of displacement vectors in elastic and fluid phases are obtained.
@article{ZNSL_2011_393_a6,
     author = {G. L. Zavorokhin},
     title = {Wave field from a~point source on an open boundary of half plane {Biot}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {101--110},
     year = {2011},
     volume = {393},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a6/}
}
TY  - JOUR
AU  - G. L. Zavorokhin
TI  - Wave field from a point source on an open boundary of half plane Biot
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 101
EP  - 110
VL  - 393
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a6/
LA  - ru
ID  - ZNSL_2011_393_a6
ER  - 
%0 Journal Article
%A G. L. Zavorokhin
%T Wave field from a point source on an open boundary of half plane Biot
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 101-110
%V 393
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a6/
%G ru
%F ZNSL_2011_393_a6
G. L. Zavorokhin. Wave field from a point source on an open boundary of half plane Biot. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 101-110. http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a6/

[1] Molotkov L. A., Issledovanie rasprostraneniya voln v poristykh i treschinovatykh sredakh na osnove effektivnykh modelei Bio i sloistykh sred, Nauka, SPb, 2001

[2] Gerasik V., Stastna M., “Poroelastic acoustic wave trains excited by harmonic line tractions”, Proc. R. Soc. A, 464:2090, February (2008), 491–511 | DOI

[3] Petrashen G. I., Marchuk G. I., Ogurtsov K. I., “O zadache Lemba v sluchae poluprostranstva”, Uch. Zap. LGU, 35:21 (1950), 71–118

[4] Babich V. M., Kochuguev S. K., O metode V. I. Smirnova – S. L. Soboleva yavnogo resheniya zadach matematicheskoi teorii difraktsii, Preprint No 1, POMI, 2002, 35 pp.

[5] Smirnoff V. I., Soboleff S. L., Sur une methode nouvelle dans le probleme plan des vibrations elastiques, Tr. Seism. inst., 20, Izd-vo AN SSSR, L., 1932