@article{ZNSL_2011_393_a5,
author = {M. N. Demchenko},
title = {Nonunique continuation for the {Maxwell} system},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {80--100},
year = {2011},
volume = {393},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a5/}
}
M. N. Demchenko. Nonunique continuation for the Maxwell system. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 80-100. http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a5/
[1] M. Eller, M. Yamamoto, “A Carleman inequality for the stationary anisotropic Maxwell system”, J. Math. Pures Appl., 86 (2006), 449–462 | DOI | MR | Zbl
[2] T. Suslina, “Absolyutnaya nepreryvnost spektra periodicheskogo operatora Maksvella v sloe”, Zap. nauchn. semin. POMI, 288, 2002, 232–255 | MR | Zbl
[3] N. Filonov, “Ellipticheskoe uravnenie vtorogo poryadka v divergentnoi forme, imeyuschee reshenie s kompaktnym nositelem”, Problemy mat. analiza, 22, 2001, 246–257 | Zbl
[4] K. Miller, “Nonunique continuation for uniformly parabolic and elliptic equations in self-adjoint divergence form with Hölder continuous coefficients”, Arch. Rat. Mech Anal., 54:2 (1974), 105–117 | DOI | MR | Zbl
[5] A. Pliŝ, “On non-uniqueness in Cauchy problem for an elliptic second order equation”, Bull. de l'Acad. Polon. Sc., Série Sc., Math., Astr., Phys., 11:3 (1963), 95–100 | MR | Zbl