@article{ZNSL_2011_393_a4,
author = {J. H. Videman and V. Chiado' Piat and S. A. Nazarov},
title = {Asymptotics of frequency of a~surface wave trapped by a~slightly inclined barrier in a~liquid layer},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {46--79},
year = {2011},
volume = {393},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a4/}
}
TY - JOUR AU - J. H. Videman AU - V. Chiado' Piat AU - S. A. Nazarov TI - Asymptotics of frequency of a surface wave trapped by a slightly inclined barrier in a liquid layer JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 46 EP - 79 VL - 393 UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a4/ LA - ru ID - ZNSL_2011_393_a4 ER -
%0 Journal Article %A J. H. Videman %A V. Chiado' Piat %A S. A. Nazarov %T Asymptotics of frequency of a surface wave trapped by a slightly inclined barrier in a liquid layer %J Zapiski Nauchnykh Seminarov POMI %D 2011 %P 46-79 %V 393 %U http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a4/ %G ru %F ZNSL_2011_393_a4
J. H. Videman; V. Chiado' Piat; S. A. Nazarov. Asymptotics of frequency of a surface wave trapped by a slightly inclined barrier in a liquid layer. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 46-79. http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a4/
[1] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[2] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[3] T. H. Havelock, “Forced surface waves on water”, Phil. Mag., 8 (1929), 569–576 | Zbl
[4] S. A. Nazarov, “Prostoi sposob obnaruzheniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Dokl. RAN, 429:6 (2009), 746–749 | MR | Zbl
[5] S. A. Nazarov, “Dostatochnye usloviya poyavleniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Zap. nauchn. semin. POMI RAN, 369, 2009, 202–223 | MR
[6] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980 | MR
[7] F. Ursell, “Trapping modes in the theory of surface waves”, Proc. Camb. Phil. Soc., 47 (1951), 347–358 | DOI | MR | Zbl
[8] F. Ursell, “Mathematical aspects of trapping modes in the theory of surface waves”, J. Fluid Mech., 183 (1987), 421–437 | DOI | MR | Zbl
[9] R. M. Garipov, “On the linear theory of gravity waves: the theorem of existence and uniqueness”, Arch. Rat. Mech. Anal., 24 (1967), 352–362 | DOI | MR | Zbl
[10] S. A. Nazarov, “Kontsentratsiya lovushechnykh mod v zadachakh lineinoi teorii voln na poverkhnosti zhidkosti”, Matem. sb., 199:12 (2008), 53–78 | DOI | MR | Zbl
[11] F. Ursell, “The effect of a fixed vertical barrier on surface waves in deep water”, Proc. Camb. Phil. Soc., 43 (1947), 374–382 | DOI | MR | Zbl
[12] F. John, “Waves in the presence of an inclined barrier”, Comm. Pure Appl. Math., 1 (1948), 149–200 | DOI | MR | Zbl
[13] D. V. Evans, “Diffraction of water-waves by a submerged vertical plate”, J. Fluid Mech., 40 (1970), 433–451 | DOI | Zbl
[14] P. McIver, “Scattering of water waves by two surface-piercing vertical barriers”, IMA J. Appl. Math., 35 (1985), 339–355 | DOI | MR | Zbl
[15] D. C. Shaw, “Perturbational results for diffraction of water-waves by nearly-vertical barriers”, IMA J. Appl. Math., 34 (1985), 99–117 | DOI | MR | Zbl
[16] X. Yu, A. T. Chwang, “Analysis of wave scattering by submerged circular disk”, J. Eng. Mech., 119 (1993), 1804–1817 | DOI
[17] N. F. Parsons, P. A. Martin, “Scattering of water waves by submerged curved plates and by surface-piercing flat plates”, Appl. Ocean Res., 16 (1994), 129–139 | DOI
[18] L. Farina, P. A. Martin, “Scattering of water waves by a submerged disc using a hypersingular integral equation”, Appl. Ocean Res., 20 (1998), 121–134 | DOI
[19] M. D. Groves, “On the existence of trapped modes in channels of arbitrary cross-sections”, Math. Meth. Appl. Sci., 20 (1997), 521–545 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[20] P. A. Martin, N. F. Parsons, L. Farina, “Interaction of water waves with thin plates”, Mathematical Techniques for Water Waves, Computational Mechanics Publications, ed. B. N. Mandal, 1997, 197–229 | MR | Zbl
[21] C. M. Linton, D. V. Evans, “Trapped modes above a submerged horizontal plate”, Q. J. Mech. Appl. Math., 4 (1991), 487–506 | DOI | MR
[22] N. F. Parsons, P. A. Martin, “Trapping of water waves by submerged plates using hyper-singular integral equations”, J. Fluid Mech., 284 (1995), 359–375 | DOI | MR | Zbl
[23] C. M. Linton, N. G. Kuznetsov, “Non-uniqueness in two-dimensional water wave problems: numerical evidence and geometrical restrictions”, Proc. R. Soc. Lond. A, 453 (1997), 2437–2460 | DOI | MR | Zbl
[24] N. Kuznetsov, P. McIver, C. M. Linton, “On uniqueness and trapped modes in the water-wave problem for vertical barriers”, Wave Motion, 33 (2001), 283–307 | DOI | MR | Zbl
[25] I. V. Kamotskii, S. A. Nazarov, “Eksponentsialno zatukhayuschie resheniya zadachi o difraktsii na zhestkoi periodicheskoi reshetke”, Matem. zametki, 73:1 (2003), 138–140 | DOI | MR | Zbl
[26] S. A. Nazarov, “Variatsionnyi i asimptoticheskii metody poiska sobstvennykh chisel pod porogom nepreryvnogo spektra”, Sibirsk. matem. zhurnal, 51:5 (2010), 1086–1101 | MR | Zbl
[27] S. A. Nazarov, J. H. Videman, “Existence of edge waves along three-dimensional periodic structures”, J. of Fluid Mech., 659 (2010), 225–246 | DOI | MR | Zbl
[28] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl
[29] J. Sanchez-Hubert, E. Sanchez-Palencia, Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer Verlag, Heidelberg, 1989 | MR | Zbl
[30] W. G. Mazja, S. A. Nasarow, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten 1, Akademie-Verlag, Berlin, 1991 | MR
[31] W. Bulla, F. Gesztesy, W. Renrer, B. Simon, “Weakly coupled bound states in quantum waveguides”, Proc. Amer. Math. Soc., 125:8 (1997), 1487–1495 | DOI | MR | Zbl
[32] P. Exner, S. A. Vugalter, “Bound-states in a locally deformed waveguide: the critical case”, Lett. Math. Phys., 39:1 (1997), 59–68 | DOI | MR | Zbl
[33] D. Borisov, P. Exner, R. Gagyl'shin, D. Krejčiřik, “Bound states in weakly deformed strips and layers”, Ann. H. Poincaré, 2 (2001), 553–571 | DOI | MR
[34] V. P. Maslov, “Asimptotika sobstvennykh funktsii uravneniya $\Delta u+k^2u=0$ k kraevymi usloviyami na ekvidistantnykh krivykh i raseyanie elektromagnitnykh voln v volnovode”, Dokl. AN SSSR, 123:4 (1958), 631–633 | Zbl
[35] P. Duclos, P. Exner, “Curvature-induced bound sttes in quantum waveguides in two and three dimensions”, Review Math. Phys., 7:1 (1995), 73–102 | DOI | MR | Zbl
[36] Y. Avishai, D. Bessis, B. G. Giraud, G. Mantica, “Quamtum bound states in open geometries”, Physical Review B, 44:15 (1991), 8028–8034 | DOI
[37] V. V. Grushin, “O sobstvennykh znacheniyakh finitno vozmuschennogo operatora Laplasa v beskonechnykh tsilindricheskikh oblastyakh”, Matem. zametki, 75:3 (2004), 360–371 | DOI | MR | Zbl
[38] R. R. Gadylshin, “O lokalnykh vozmuscheniyakh kvantovykh volnovodov”, Teor. i matem. fizika, 145:3 (2005), 358–371 | DOI | MR | Zbl
[39] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[40] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1963, 219–292
[41] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | Zbl
[42] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI | Zbl
[43] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | DOI | MR | Zbl
[44] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[45] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains”, Sobolev Spaces in Mathematics, v. II, International Mathematical Series, 9, ed. Maz'ya V., Springer, New York, 2008, 261–309 | DOI | MR
[46] M. Van-Daik, Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967
[47] J. Hadamard, “Mémoire sur le problème d'analyse relatif à l'éuilibre des plaques élastiques encastrées”, ØE uvres, 2 (1968), 515–631
[48] S. A. Nazarov, “Stsenarii kvazistaticheskogo rosta treschin pri slabom iskrivlenii i izlome”, Prikladnaya matem. i mekhanika, 72:3 (2008), 507–525 | MR