Asymptotics of frequency of a~surface wave trapped by a~slightly inclined barrier in a~liquid layer
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 46-79
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the two-dimensional formulation of the problem on an oblique surface wave for an obstacle in the shape of a submerged strip-barrier. If the barrier is vertical, the discrete spectrum of the problem is empty, but for an inclined barrier there appear an eigenvalue below the threshold of the continuous spectrum and the corresponding trapped mode which decays exponentially in the direction, perpendicular to the obstacle. The asymptotics of the eigenvalue is found in the case of a small inclination angle.
@article{ZNSL_2011_393_a4,
author = {J. H. Videman and V. Chiado' Piat and S. A. Nazarov},
title = {Asymptotics of frequency of a~surface wave trapped by a~slightly inclined barrier in a~liquid layer},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {46--79},
publisher = {mathdoc},
volume = {393},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a4/}
}
TY - JOUR AU - J. H. Videman AU - V. Chiado' Piat AU - S. A. Nazarov TI - Asymptotics of frequency of a~surface wave trapped by a~slightly inclined barrier in a~liquid layer JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 46 EP - 79 VL - 393 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a4/ LA - ru ID - ZNSL_2011_393_a4 ER -
%0 Journal Article %A J. H. Videman %A V. Chiado' Piat %A S. A. Nazarov %T Asymptotics of frequency of a~surface wave trapped by a~slightly inclined barrier in a~liquid layer %J Zapiski Nauchnykh Seminarov POMI %D 2011 %P 46-79 %V 393 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a4/ %G ru %F ZNSL_2011_393_a4
J. H. Videman; V. Chiado' Piat; S. A. Nazarov. Asymptotics of frequency of a~surface wave trapped by a~slightly inclined barrier in a~liquid layer. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 46-79. http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a4/