Determination of distances to virtual source from dynamical boundary data
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 29-45
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper, we show that the dynamical boundary data (the response operator), which correspond to the measurements at the boundary of a Riemannian manifold, do determine the distances (wave travel times) from the boundary points to an interior source with a given semi-geodesic coordinates. The procedure, which determines these distances, is in principle available for numerical realization.
@article{ZNSL_2011_393_a3,
author = {M. I. Belishev},
title = {Determination of distances to virtual source from dynamical boundary data},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {29--45},
year = {2011},
volume = {393},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a3/}
}
M. I. Belishev. Determination of distances to virtual source from dynamical boundary data. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 29-45. http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a3/
[1] V. M. Babich, V. S. Buldyrev, Asisptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, Moskva, 1972 | MR
[2] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl
[3] M. I. Belishev, “O rekonstruktsii rimanova mnogoobraziya po granichnym dannym: teoriya i plan chislennogo eksperimenta”, Zap. nauchn. semin. POMI, 380, 2010, 8–30 | MR
[4] M. I. Belishev, M. N. Demchenko, “Time-optimal reconstruction of Riemannian manifold via boundary electromagnetic measurements”, J. Inverse and Ill-Posed Problems, 19:2 (2011), 167–188 | DOI | MR | Zbl