Propagation of normal waves in porous rod with opened pores on boundaries
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 211-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Propagation of normal waves in porous cylindrical rod with opened pores on boundaries is investigated. For this medium the dispersion equation is derived. At low-frequency this equation has one root which is velocity of a normal wave. While in the case of porous rod with closed pores there are two low-frequency waves. At high-frequency the dispersion equation can have in specific parameters one root. With such velocity the Rayleigh wave propagates along free boundary of porous medium with opened pores. The indicated root can be absent. In this case the Rayleigh wave is absent.
@article{ZNSL_2011_393_a14,
     author = {L. A. Molotkov},
     title = {Propagation of normal waves in porous rod with opened pores on boundaries},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {211--223},
     year = {2011},
     volume = {393},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a14/}
}
TY  - JOUR
AU  - L. A. Molotkov
TI  - Propagation of normal waves in porous rod with opened pores on boundaries
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 211
EP  - 223
VL  - 393
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a14/
LA  - ru
ID  - ZNSL_2011_393_a14
ER  - 
%0 Journal Article
%A L. A. Molotkov
%T Propagation of normal waves in porous rod with opened pores on boundaries
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 211-223
%V 393
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a14/
%G ru
%F ZNSL_2011_393_a14
L. A. Molotkov. Propagation of normal waves in porous rod with opened pores on boundaries. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 211-223. http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a14/

[1] L. A. Molotkov, “Rasprostranenie normalnykh voln v poristom sterzhne s zakrytymi porami na granitsakh”, Zap. nauchn. semin. POMI, 393, 2011, 191–210 | MR

[2] M. A. Biot, “Theory of elastic waves in fluid-saturated porous solid. I. Low-frequency range”, Acoust. Soc. Amer., 28 (1956), 168–178 | DOI | MR

[3] M. A. Biot, “Theory of elastic waves in fluid-saturated porous solid. II. Higher frequency range”, Acoust. Soc. Amer., 28 (1956), 179–191 | DOI | MR

[4] L. A. Molotkov, Issledovanie rasprostraneniya voln v poristykh i treschinovatykh sredakh na osnove effektivnykh modelei Bio i sloistykh sred, Nauka, S.-Peterburg, 2001

[5] M. A. Biot, D. G. Willis, “The elastic coefficients of theory consolidation”, Appl. Mechan., 24 (1957), 594–601 | MR

[6] J. Geertsma, D. C. Smit, “Some aspects of elastic wave propagation in fluid-saturated porous solid”, Geophysics, 26 (1961), 169–181 | DOI | MR

[7] L. A. Molotkov, “Rasprostranenie voln v izolirovannom poristom sloe Bio s zakrytymi porami na granitsakh”, Zap. nauchn. semin. POMI, 354, 2008, 173–189 | MR | Zbl

[8] L. A. Molotkov, “O rasprostranenii normalnykh voln v izolirovannom poristom flyuidonasyschennom sloe Bio”, Zap. nauchn. semin. POMI, 257, 1999, 165–183 | MR | Zbl