Exact solutions of the $m$-dimensional wave equation from paraxial ones. Further generalization of the Bateman solution
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 167-177

Voir la notice de l'article provenant de la source Math-Net.Ru

A review of earlier generalizations of the classical Bateman solution, involving an arbitrary function, is presented. Its further generalization, described by $m(m-1)$ real parameters characterizing the phase, is given. Under a proper choice of the arbitrary function, it may describe Gaussian beam or Gaussian packet.
@article{ZNSL_2011_393_a11,
     author = {A. P. Kiselev and A. B. Plachenov},
     title = {Exact solutions of the $m$-dimensional wave equation from paraxial ones. {Further} generalization of the {Bateman} solution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--177},
     publisher = {mathdoc},
     volume = {393},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a11/}
}
TY  - JOUR
AU  - A. P. Kiselev
AU  - A. B. Plachenov
TI  - Exact solutions of the $m$-dimensional wave equation from paraxial ones. Further generalization of the Bateman solution
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 167
EP  - 177
VL  - 393
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a11/
LA  - ru
ID  - ZNSL_2011_393_a11
ER  - 
%0 Journal Article
%A A. P. Kiselev
%A A. B. Plachenov
%T Exact solutions of the $m$-dimensional wave equation from paraxial ones. Further generalization of the Bateman solution
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 167-177
%V 393
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a11/
%G ru
%F ZNSL_2011_393_a11
A. P. Kiselev; A. B. Plachenov. Exact solutions of the $m$-dimensional wave equation from paraxial ones. Further generalization of the Bateman solution. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 167-177. http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a11/