Reflection and refraction from a~vertical layer of surface SH-waves radiated from a~point source on a~free from tensions boundary
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 152-166

Voir la notice de l'article provenant de la source Math-Net.Ru

By the use of asymptotical boundary layer method we analysis a transformation of the elastic SH-polarized surface wave of whispering gallery type (so-called Lowe waves), in the case this wave passes many times a vertical layer between two half-planes.
@article{ZNSL_2011_393_a10,
     author = {N. Ya. Kirpichnikova and A. S. Kirpichnikova},
     title = {Reflection and refraction from a~vertical layer of surface {SH-waves} radiated from a~point source on a~free from tensions boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {152--166},
     publisher = {mathdoc},
     volume = {393},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a10/}
}
TY  - JOUR
AU  - N. Ya. Kirpichnikova
AU  - A. S. Kirpichnikova
TI  - Reflection and refraction from a~vertical layer of surface SH-waves radiated from a~point source on a~free from tensions boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 152
EP  - 166
VL  - 393
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a10/
LA  - ru
ID  - ZNSL_2011_393_a10
ER  - 
%0 Journal Article
%A N. Ya. Kirpichnikova
%A A. S. Kirpichnikova
%T Reflection and refraction from a~vertical layer of surface SH-waves radiated from a~point source on a~free from tensions boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 152-166
%V 393
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a10/
%G ru
%F ZNSL_2011_393_a10
N. Ya. Kirpichnikova; A. S. Kirpichnikova. Reflection and refraction from a~vertical layer of surface SH-waves radiated from a~point source on a~free from tensions boundary. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 152-166. http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a10/