Diffraction by a narrow circular cone as by a strongly elongated body
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 12-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Leading order terms of the asymptotic expansions in the problems of acoustic and electromagnetic waves diffraction by narrow circular cone are constructed in this paper. By analogy with problems of diffraction by strongly elongated bodies the derivations are carried out in special system of coordinates related to the surface which takes into account that the cone angle is small. Graphics of special functions appearing in the considered problems of diffraction are presented.
@article{ZNSL_2011_393_a1,
     author = {I. V. Andronov and D. Bouche},
     title = {Diffraction by a narrow circular cone as by a strongly elongated body},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {12--22},
     year = {2011},
     volume = {393},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a1/}
}
TY  - JOUR
AU  - I. V. Andronov
AU  - D. Bouche
TI  - Diffraction by a narrow circular cone as by a strongly elongated body
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 12
EP  - 22
VL  - 393
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a1/
LA  - ru
ID  - ZNSL_2011_393_a1
ER  - 
%0 Journal Article
%A I. V. Andronov
%A D. Bouche
%T Diffraction by a narrow circular cone as by a strongly elongated body
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 12-22
%V 393
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a1/
%G ru
%F ZNSL_2011_393_a1
I. V. Andronov; D. Bouche. Diffraction by a narrow circular cone as by a strongly elongated body. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 12-22. http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a1/

[1] I. V. Andronov, “High-frequency asymptotics of electromagnetic field on a strongly elongated spheroid”, PIERS Online, 5:6 (2009), 536–540

[2] I. V. Andronov, “High-frequency asymptotics for diffraction by a strongly elongated body”, Antennas and Wireless Propagation Letters IEEE, 8 (2009), 872 | DOI

[3] I. V. Andronov, “Difraktsiya na silno vytyanutom tele vrascheniya”, Akust. zhurn., 57:2 (2011), 147–152 | MR

[4] I. V. Andronov, “Difraktsiya vysokochastotnoi elektromagnitnoi volny na vytyanutom tele vrascheniya”, Radiotekhnika i elektronika, 56:11 (2011), 1336–1342

[5] V. A. Fok, “Raspredelenie tokov, vozbuzhdaemykh ploskoi volnoi na poverkhnosti provodnika”, ZhETF, 15:12 (1945), 693

[6] A. V. Shanin, “Diffraction series on a sphere and conical asymptotics”, Procedings of the International Conference Days on Diffraction 2011, St. Petersburg, 2011, 88–93

[7] A. V. Shanin, “Asimptotiki volnovogo polya pri difraktsii na konuse i difraktsionnyi ryad na sfere”, Zap. nauchn. semin. POMI, 393, 2011, 234–258 | MR

[8] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, Moskva, 1963

[9] J. J. Bowman, T. B. Senior, L. T. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes, Hemisphere Publishing Corporation, New York, 1987 | MR