Inverse source problem for the 1-D Schrödinger equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 5-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the inverse problem of determining a source in the dynamical Schrödinger equation $iu_t-u_{xx}+q(x)u=w(t)a(x)$, $0, with Dirichlet boundary conditions and zero initial condition. From the measurement $u_x(0,t)$, $0, we recover unknown $a(x)$ provided $q(x)$ and $w(t)$ are given. We describe also how to recover $a(x)$ and $q(x)$ from the measurements at the both boundary points.
@article{ZNSL_2011_393_a0,
     author = {S. A. Avdonin and V. S. Mikhaylov},
     title = {Inverse source problem for the {1-D} {Schr\"odinger} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--11},
     year = {2011},
     volume = {393},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a0/}
}
TY  - JOUR
AU  - S. A. Avdonin
AU  - V. S. Mikhaylov
TI  - Inverse source problem for the 1-D Schrödinger equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 5
EP  - 11
VL  - 393
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a0/
LA  - en
ID  - ZNSL_2011_393_a0
ER  - 
%0 Journal Article
%A S. A. Avdonin
%A V. S. Mikhaylov
%T Inverse source problem for the 1-D Schrödinger equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 5-11
%V 393
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a0/
%G en
%F ZNSL_2011_393_a0
S. A. Avdonin; V. S. Mikhaylov. Inverse source problem for the 1-D Schrödinger equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 5-11. http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a0/

[1] S. Avdonin, A. Bulanova, “Boundary control approach to the spectral estimation problem. The case of multiple poles”, Math. Contr. Sign. Syst., 22:3 (2011), 245–265 | DOI | MR | Zbl

[2] S. Avdonin, A. Bulanova, D. Nicolsky, “Boundary control approach to the spectral estimation problem. The case of simple poles”, Sampling Theory in Signal and Image Processing, 8:3 (2009), 225–248 | MR | Zbl

[3] S. Avdonin, F. Gesztesy, K. A. Makarov, “Spectral estimation and inverse initial boundary value problems”, Inverse Probl. Imaging, 4:1 (2010), 1–9 | DOI | MR | Zbl

[4] S. Avdonin, S. Ivanov, Families of exponentials, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[5] S. Avdonin, S. Lenhart, V. Protopopescu, “Solving the dynamical inverse problem for the Schrödinger equation by the Boundary Control method”, Inverse Problems, 18 (2002), 41–57 | DOI | MR

[6] S. Avdonin, S. Lenhart, V. Protopopescu, “Determining the potential in the Schrödinger equation from the Dirichlet to Neumann map by the Boundary Control method”, J. Inverse and Ill-Posed Problems, 13:5 (2005), 317–330 | DOI | MR | Zbl

[7] S. Avdonin, V. Mikhaylov, “The boundary control approach to inverse spectral theory”, Inverse Problems, 26:4 (2010), 045009, 19 pp. | DOI | MR | Zbl

[8] S. Avdonin, V. Mikhaylov, K. Ramdani, Reconstructing the potential for the 1D Schrödinger equation from boundary measurements, (Submitted)

[9] M. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R01 | DOI | MR | Zbl

[10] A. Boumenir, V. K. Tuan, “Inverse problems for multidimensional heat equations by measurements at a single point on the boundary”, Numer. Funct. Anal. Optim., 30 (2009), 1215–1230 | DOI | MR | Zbl

[11] A. Boumenir, V. K. Tuan, “An inverse problem for the heat equation”, Proc. Amer. Math. Soc., 138 (2010), 3911–3921 | DOI | MR | Zbl

[12] K. Ramdani, M. Tucsnak, G. Weiss, “Recovering the initial state of an infinite-dimensional system using observers”, Automatica, 46 (2010), 1616–1625 | DOI | MR | Zbl

[13] K. Ito, K. Ramdani, M. Tucsnak, “A time reversal based algorithm for solving initial data inverse problems”, Discrete Contin. Dyn. Syst. Ser. S, 4:3 (2011), 641–652 | DOI | MR | Zbl

[14] J. Pöschel, E. Trubowitz, Inverse spectral theory, Pure and Applied Mathematics, 130, Academic Press, Inc., Boston, MA, 1987 | MR | Zbl

[15] C. Marianne, M. Mazyar, Distributed source identifcation for wave equations: an observer-based approach, Preprint | MR

[16] M. Yamamoto, “Stability, reconstruction formula and regularization for an inverse source hyperbolic problem by a control method”, Inverse Problems, 11 (1995), 481–496 | DOI | MR | Zbl