Inverse source problem for the 1-D Schr\"odinger equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 5-11

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the inverse problem of determining a source in the dynamical Schrödinger equation $iu_t-u_{xx}+q(x)u=w(t)a(x)$, $0$, with Dirichlet boundary conditions and zero initial condition. From the measurement $u_x(0,t)$, $0$, we recover unknown $a(x)$ provided $q(x)$ and $w(t)$ are given. We describe also how to recover $a(x)$ and $q(x)$ from the measurements at the both boundary points.
@article{ZNSL_2011_393_a0,
     author = {S. A. Avdonin and V. S. Mikhaylov},
     title = {Inverse source problem for the {1-D} {Schr\"odinger} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--11},
     publisher = {mathdoc},
     volume = {393},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a0/}
}
TY  - JOUR
AU  - S. A. Avdonin
AU  - V. S. Mikhaylov
TI  - Inverse source problem for the 1-D Schr\"odinger equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 5
EP  - 11
VL  - 393
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a0/
LA  - en
ID  - ZNSL_2011_393_a0
ER  - 
%0 Journal Article
%A S. A. Avdonin
%A V. S. Mikhaylov
%T Inverse source problem for the 1-D Schr\"odinger equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 5-11
%V 393
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a0/
%G en
%F ZNSL_2011_393_a0
S. A. Avdonin; V. S. Mikhaylov. Inverse source problem for the 1-D Schr\"odinger equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 41, Tome 393 (2011), pp. 5-11. http://geodesic.mathdoc.fr/item/ZNSL_2011_393_a0/