@article{ZNSL_2011_392_a8,
author = {P. A. Pugach and V. A. Shlyk},
title = {Removable sets for the generalized module of surface's family},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {163--190},
year = {2011},
volume = {392},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a8/}
}
P. A. Pugach; V. A. Shlyk. Removable sets for the generalized module of surface's family. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 163-190. http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a8/
[1] P. A. Pugach, V. A. Shlyk, “Obobschennye emkosti i poliedralnye poverkhnosti”, Zap. nauchn. semin. POMI, 383, 2010, 148–178 | MR
[2] Yu. V. Dymchenko, V. A. Shlyk, “O dostatochnosti semeistva poliedralnykh poverkhnostei v metode modulei i ustranimye mnozhestva”, Mat. zametki, 90:2 (2011), 216–230 | DOI | MR | Zbl
[3] V. V. Aseev, “NED-mnozhestva, lezhaschie v giperploskosti”, Sib. mat. zh., 50:5 (2009), 967–986 | MR | Zbl
[4] Yu. V. Dymchenko, V. A. Shlyk, “Dostatochnost semeistva lomanykh v metode modulei i ustranimye mnozhestva”, Sib. mat. zhurn., 51:6 (2010), 1298–1315 | MR | Zbl
[5] L. I. Hedberg, “Removable singularities and condenser capacities”, Ark. Mat., 12 (1974), 181–201 | DOI | MR | Zbl
[6] I. N. Demshin, V. A. Shlyk, “Kriterii ustranimykh mnozhestv dlya vesovykh prostranstv garmonicheskikh funktsii”, Zap. nauchn. semin. POMI, 286, 2002, 62–73 | MR | Zbl
[7] B. Muckenhoupt, “Weighted norm inequalities for the Hardy maximal functions”, Trans. Amer. Math. Soc., 192 (1972), 207–226 | DOI | MR
[8] M. Ohtsuka, Extremal length and precise functions, GAKUTO International Series, Mathematical Sciences and Applications, 19, Gakkōtosho Co., Ltd, Tokyo, 2003 | MR | Zbl
[9] V. A. Shlyk, “Vesovye emkosti, moduli kondensatorov i isklyuchitelnye mnozhestva po Fyuglede”, Dokl. RAN, 332:4 (1993), 428–431 | MR | Zbl
[10] L. K. Evans, R. F. Gariepi, Teoriya mery i tonkie svoistva funktsii, Novosibirsk, 2002
[11] V. M. Miklyukov, Vvedenie v negladkii analiz, Izd-vo VolGU, Volgograd, 2008
[12] E. Dzhusti, Minimalnye poverkhnosti i funktsii ogranichennoi variatsii, M., 1989 | MR
[13] E. De Giorgi, “Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazio ad $r$ dimensioni”, Ricerche Mat., 4 (1955), 95–113 | MR | Zbl
[14] W. P. Ziemer, Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, Springer-Verlag, New York, 1989 | MR | Zbl
[15] H. Aikawa, M. Ohtsuka, “Extremal length of vector measures”, Ann. Acad. Sci. Fenn. Math., 24 (1999), 61–88 | MR | Zbl
[16] G. Federer, Geometricheskaya teoriya mery, M., 1987
[17] A. V. Sychev, Moduli i prostranstvennye kvazikonformnye otobrazheniya, Novosibirsk, 1983
[18] V. A. Shlyk, “Topologicheski ustranimye kompakty dlya prostranstvennykh kvazikonformnykh otobrazhenii”, Dalnevostochnyi mat. sb., 1 (1995), 63–67 | Zbl