Removable sets for the generalized module of surface's family
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 163-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Necessary and sufficient conditions for a set to be a removable set of the generalized module of a surface family are obtained and applied to sets of finite length.
@article{ZNSL_2011_392_a8,
     author = {P. A. Pugach and V. A. Shlyk},
     title = {Removable sets for the generalized module of surface's family},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {163--190},
     year = {2011},
     volume = {392},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a8/}
}
TY  - JOUR
AU  - P. A. Pugach
AU  - V. A. Shlyk
TI  - Removable sets for the generalized module of surface's family
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 163
EP  - 190
VL  - 392
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a8/
LA  - ru
ID  - ZNSL_2011_392_a8
ER  - 
%0 Journal Article
%A P. A. Pugach
%A V. A. Shlyk
%T Removable sets for the generalized module of surface's family
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 163-190
%V 392
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a8/
%G ru
%F ZNSL_2011_392_a8
P. A. Pugach; V. A. Shlyk. Removable sets for the generalized module of surface's family. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 163-190. http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a8/

[1] P. A. Pugach, V. A. Shlyk, “Obobschennye emkosti i poliedralnye poverkhnosti”, Zap. nauchn. semin. POMI, 383, 2010, 148–178 | MR

[2] Yu. V. Dymchenko, V. A. Shlyk, “O dostatochnosti semeistva poliedralnykh poverkhnostei v metode modulei i ustranimye mnozhestva”, Mat. zametki, 90:2 (2011), 216–230 | DOI | MR | Zbl

[3] V. V. Aseev, “NED-mnozhestva, lezhaschie v giperploskosti”, Sib. mat. zh., 50:5 (2009), 967–986 | MR | Zbl

[4] Yu. V. Dymchenko, V. A. Shlyk, “Dostatochnost semeistva lomanykh v metode modulei i ustranimye mnozhestva”, Sib. mat. zhurn., 51:6 (2010), 1298–1315 | MR | Zbl

[5] L. I. Hedberg, “Removable singularities and condenser capacities”, Ark. Mat., 12 (1974), 181–201 | DOI | MR | Zbl

[6] I. N. Demshin, V. A. Shlyk, “Kriterii ustranimykh mnozhestv dlya vesovykh prostranstv garmonicheskikh funktsii”, Zap. nauchn. semin. POMI, 286, 2002, 62–73 | MR | Zbl

[7] B. Muckenhoupt, “Weighted norm inequalities for the Hardy maximal functions”, Trans. Amer. Math. Soc., 192 (1972), 207–226 | DOI | MR

[8] M. Ohtsuka, Extremal length and precise functions, GAKUTO International Series, Mathematical Sciences and Applications, 19, Gakkōtosho Co., Ltd, Tokyo, 2003 | MR | Zbl

[9] V. A. Shlyk, “Vesovye emkosti, moduli kondensatorov i isklyuchitelnye mnozhestva po Fyuglede”, Dokl. RAN, 332:4 (1993), 428–431 | MR | Zbl

[10] L. K. Evans, R. F. Gariepi, Teoriya mery i tonkie svoistva funktsii, Novosibirsk, 2002

[11] V. M. Miklyukov, Vvedenie v negladkii analiz, Izd-vo VolGU, Volgograd, 2008

[12] E. Dzhusti, Minimalnye poverkhnosti i funktsii ogranichennoi variatsii, M., 1989 | MR

[13] E. De Giorgi, “Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazio ad $r$ dimensioni”, Ricerche Mat., 4 (1955), 95–113 | MR | Zbl

[14] W. P. Ziemer, Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, Springer-Verlag, New York, 1989 | MR | Zbl

[15] H. Aikawa, M. Ohtsuka, “Extremal length of vector measures”, Ann. Acad. Sci. Fenn. Math., 24 (1999), 61–88 | MR | Zbl

[16] G. Federer, Geometricheskaya teoriya mery, M., 1987

[17] A. V. Sychev, Moduli i prostranstvennye kvazikonformnye otobrazheniya, Novosibirsk, 1983

[18] V. A. Shlyk, “Topologicheski ustranimye kompakty dlya prostranstvennykh kvazikonformnykh otobrazhenii”, Dalnevostochnyi mat. sb., 1 (1995), 63–67 | Zbl