On the zeros of one ternary quadratic form zeta function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 159-162
Cet article a éte moissonné depuis la source Math-Net.Ru
The author reports on computation of the zeros of the Epstein zeta-function of the quadratic form $x^2+y^2+z^2$.
@article{ZNSL_2011_392_a7,
author = {N. V. Proskurin},
title = {On the zeros of one ternary quadratic form zeta function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {159--162},
year = {2011},
volume = {392},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a7/}
}
N. V. Proskurin. On the zeros of one ternary quadratic form zeta function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 159-162. http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a7/
[1] C. L. Siegel, “Contributions to the theory of the Dirichlet $L$-series and the Epstein zeta-functions”, Ann. Math., 44:2 (1943), 143–172 | DOI | MR | Zbl
[2] O. M. Fomenko, “O dzeta-funktsii Epshteina”, Zap. nauchn. semin. POMI, 286, 2002, 169–178 ; “О дзета-функции Эпштейна. II”, Зап. научн. семин. ПОМИ, 371, 2009, 157–170 | MR | Zbl
[3] E. C. Titchmarsh, The theory of functions, Oxford University Press, 1939 | MR
[4] K. Ramachandra, A. Sankaranarayanan, “Hardy's theorem for zeta-functions of quadratic forms”, Proc. Indian Acad. Sci., 106:3 (1996), 217–226 | DOI | MR | Zbl