On the zeros of one ternary quadratic form zeta function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 159-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The author reports on computation of the zeros of the Epstein zeta-function of the quadratic form $x^2+y^2+z^2$.
@article{ZNSL_2011_392_a7,
     author = {N. V. Proskurin},
     title = {On the zeros of one ternary quadratic form zeta function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {159--162},
     year = {2011},
     volume = {392},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a7/}
}
TY  - JOUR
AU  - N. V. Proskurin
TI  - On the zeros of one ternary quadratic form zeta function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 159
EP  - 162
VL  - 392
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a7/
LA  - ru
ID  - ZNSL_2011_392_a7
ER  - 
%0 Journal Article
%A N. V. Proskurin
%T On the zeros of one ternary quadratic form zeta function
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 159-162
%V 392
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a7/
%G ru
%F ZNSL_2011_392_a7
N. V. Proskurin. On the zeros of one ternary quadratic form zeta function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 159-162. http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a7/

[1] C. L. Siegel, “Contributions to the theory of the Dirichlet $L$-series and the Epstein zeta-functions”, Ann. Math., 44:2 (1943), 143–172 | DOI | MR | Zbl

[2] O. M. Fomenko, “O dzeta-funktsii Epshteina”, Zap. nauchn. semin. POMI, 286, 2002, 169–178 ; “О дзета-функции Эпштейна. II”, Зап. научн. семин. ПОМИ, 371, 2009, 157–170 | MR | Zbl

[3] E. C. Titchmarsh, The theory of functions, Oxford University Press, 1939 | MR

[4] K. Ramachandra, A. Sankaranarayanan, “Hardy's theorem for zeta-functions of quadratic forms”, Proc. Indian Acad. Sci., 106:3 (1996), 217–226 | DOI | MR | Zbl