Problems on the maximum of a~conformal invariant in the presence of a~high degree of symmetry
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 146-158

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem on the maximum of the conformal invariant $$ 2\pi\sum_{k=1}^nM(D_k,a_k)-\frac2{n-1}\prod_{1\leq k\leq n}|a_k-a_l|, $$ for all systems of points $\{a_1,\dots,a_n\}$ and all systems $\{D_1,\dots,D_n\}$ of nonoverlapping simply connected domains satisfying the condition $a_k\in D_k$, $k=1,\dots,n$, is investigated. Here $M(D,a)$ is the reduced module of a domain $D$ with respect to a point $a\in D $. It is assumed that $n$ is even and systems of points $a_1,\dots,a_n$ under consideration have a high degree of symmetry.
@article{ZNSL_2011_392_a6,
     author = {G. V. Kuz'mina},
     title = {Problems on the maximum of a~conformal invariant in the presence of a~high degree of symmetry},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {146--158},
     publisher = {mathdoc},
     volume = {392},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a6/}
}
TY  - JOUR
AU  - G. V. Kuz'mina
TI  - Problems on the maximum of a~conformal invariant in the presence of a~high degree of symmetry
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 146
EP  - 158
VL  - 392
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a6/
LA  - ru
ID  - ZNSL_2011_392_a6
ER  - 
%0 Journal Article
%A G. V. Kuz'mina
%T Problems on the maximum of a~conformal invariant in the presence of a~high degree of symmetry
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 146-158
%V 392
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a6/
%G ru
%F ZNSL_2011_392_a6
G. V. Kuz'mina. Problems on the maximum of a~conformal invariant in the presence of a~high degree of symmetry. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 146-158. http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a6/