Problems on the maximum of a~conformal invariant in the presence of a~high degree of symmetry
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 146-158
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem on the maximum of the conformal invariant
$$
2\pi\sum_{k=1}^nM(D_k,a_k)-\frac2{n-1}\prod_{1\leq k\leq n}|a_k-a_l|,
$$
for all systems of points $\{a_1,\dots,a_n\}$ and all systems $\{D_1,\dots,D_n\}$ of nonoverlapping simply connected domains satisfying the condition $a_k\in D_k$, $k=1,\dots,n$, is investigated. Here $M(D,a)$ is the reduced module of a domain $D$ with respect to a point $a\in D $. It is assumed that $n$ is even and systems of points $a_1,\dots,a_n$ under consideration have a high degree of symmetry.
@article{ZNSL_2011_392_a6,
author = {G. V. Kuz'mina},
title = {Problems on the maximum of a~conformal invariant in the presence of a~high degree of symmetry},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {146--158},
publisher = {mathdoc},
volume = {392},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a6/}
}
TY - JOUR AU - G. V. Kuz'mina TI - Problems on the maximum of a~conformal invariant in the presence of a~high degree of symmetry JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 146 EP - 158 VL - 392 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a6/ LA - ru ID - ZNSL_2011_392_a6 ER -
G. V. Kuz'mina. Problems on the maximum of a~conformal invariant in the presence of a~high degree of symmetry. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 146-158. http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a6/