Some properties of the capacity and module of a polycondenser and removable sets
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 84-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper proves the continuity of the module of a polycondenser and the equality of the polycondenser's capacity and the module of a family of broken lines connecting the plates of the polycondenser. Also it is proved that sets that are removable for the condenser capacity are also removable for polycondenser capacity.
@article{ZNSL_2011_392_a4,
     author = {Yu. V. Dymchenko and V. A. Shlyk},
     title = {Some properties of the capacity and module of a~polycondenser and removable sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {84--94},
     year = {2011},
     volume = {392},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a4/}
}
TY  - JOUR
AU  - Yu. V. Dymchenko
AU  - V. A. Shlyk
TI  - Some properties of the capacity and module of a polycondenser and removable sets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 84
EP  - 94
VL  - 392
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a4/
LA  - ru
ID  - ZNSL_2011_392_a4
ER  - 
%0 Journal Article
%A Yu. V. Dymchenko
%A V. A. Shlyk
%T Some properties of the capacity and module of a polycondenser and removable sets
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 84-94
%V 392
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a4/
%G ru
%F ZNSL_2011_392_a4
Yu. V. Dymchenko; V. A. Shlyk. Some properties of the capacity and module of a polycondenser and removable sets. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 84-94. http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a4/

[1] V. V. Aseev, “$NED$-mnozhestva, lezhaschie v giperploskosti”, Sib. mat. zh., 50:5 (2009), 967–986 | MR | Zbl

[2] V. V. Aseev, B. Yu. Sultanov, Moduli polikondensatorov i izomorfizmy prostranstv sledov nepreryvnykh funtsii klassa $W^1_n$, Preprint No 31, Sib. otd. AN SSSR, In-t matematiki, Novosibirsk, 1989

[3] I. N. Demshin, Yu. V. Dymchenko, V. A. Shlyk, “Kriterii nul-mnozhestv dlya vesovykh sobolevskikh prostranstv”, Zap. nauchn. semin. POMI, 276, 2001, 52–82 | MR | Zbl

[4] V. A. Shlyk, Yu. V. Dymchenko, “Geometricheskie kriterii ustranimykh mnozhestv”, Zap. nauchn. semin. POMI, 357, 2008, 75–89 | MR | Zbl

[5] M. Ohtsuka, Extremal length and precise functions, GAKUTO International Series. Mathematical Sciences and Applications, 19, Gakkōtosho Co., Ltd., Tokyo, 2003 | MR | Zbl