On polynomials with constraints on circular arcs
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 74-83
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For polynomials with prescribed minimal and maximal values of their moduli on a collection of circular arcs it is shown that new covering and distortion theorems and a modulus estimates for a product of leading and free coefficients follow from a majorization principle for meromorphic functions proved by the authors earlier. As corollaries, recent results on polynomials with additional constraints on zeros established by other mathematicians are obtained.
@article{ZNSL_2011_392_a3,
     author = {V. N. Dubinin and S. I. Kalmukov},
     title = {On polynomials with constraints on circular arcs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {74--83},
     year = {2011},
     volume = {392},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
AU  - S. I. Kalmukov
TI  - On polynomials with constraints on circular arcs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 74
EP  - 83
VL  - 392
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a3/
LA  - ru
ID  - ZNSL_2011_392_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%A S. I. Kalmukov
%T On polynomials with constraints on circular arcs
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 74-83
%V 392
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a3/
%G ru
%F ZNSL_2011_392_a3
V. N. Dubinin; S. I. Kalmukov. On polynomials with constraints on circular arcs. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 74-83. http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a3/

[1] P. Borwein, T. Erdelyi, Polynomials and Polynomial Inequalities, Graduate Texts in Mathematics, 161, Springer-Verlag, New York, 1995 | DOI | MR

[2] Q. I. Rahman, G. Schmeisser, Analytic theory of polynomials, London Mathematical Sosiety Monographs. New Series, 26, The Charendon Press, Oxford Univ. Press, Oxford, 2002 | MR

[3] A. V. Olesov, “O primenenii konformnykh otobrazhenii k neravenstvam dlya trigonometricheskikh polinomov”, Mat. zametki, 76:3 (2004), 396–408 | DOI | MR | Zbl

[4] S. V. Tyshkevich, “O chebyshëvskikh polinomakh na dugakh okruzhnosti”, Mat. zametki, 81:6 (2007), 952–954 | DOI | MR | Zbl

[5] L. S. Maergoiz, N. N. Rybakova, Mnogochleny Chebysheva s nulevym mnozhestvom na duge okruzhnosti i smezhnye voprosy, Preprint 312M, Institut fiziki im. L. V. Kirenskogo SO RAN, Krasnoyarsk, 2008, 16 pp.

[6] L. S. Maergoiz, N. N. Rybakova, “Mnogochleny Chebyshëva s nulevym mnozhestvom na duge okruzhnosti”, Dokl. RAN, 246:1 (2009), 26–28 | MR

[7] A. L. Lukashov, S. V. Tyshkevich, “Extremal polynomials on arcs of the circle with zeros on these arcs”, J. Contemp. Math. Anal. Armen. Acad. Sci., 44:1 (2009), 172–179 | MR | Zbl

[8] V. V. Arestov, A. S. Mendelev, “O trigonometricheskikh polinomakh, naimenee uklonyayuschikhsya ot nulya”, Dokl. RAN, 425:6 (2009), 733–736 | MR | Zbl

[9] V. S. Videnskii, “Ekstremalnye otsenki proizvodnoi trigonometricheskogo polinoma na otrezke, menshem chem period”, Dokl. AN SSSR, 130:1 (1960), 13–16 | MR | Zbl

[10] J. P. Thiran, C. Detaille, “Chebyshev polynomials on circular arcs in the complex plane”, Progress approximation theory, Acad. Press, Boston, MA, 1991, 771–786 | MR

[11] I. P. Mityuk, Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Kubanskii gos. un-t, Krasnodar, 1980

[12] V. N. Dubinin, S. I. Kalmykov, “Printsip mazhoratsii dlya meromorfnykh funktsii”, Mat. sb., 198:12 (2007), 37–46 | DOI | MR | Zbl

[13] S. I. Kalmykov, “Printsipy mazhoratsii i nekotorye neravenstva dlya polinomov i ratsionalnykh funktsii s predpisannymi polyusami”, Zap. nauchn. semin. POMI, 357, 2008, 143–157 | MR | Zbl

[14] V. N. Dubinin, “O printsipakh mazhoratsii dlya meromorfnykh funktsii”, Mat. zametki, 84:6 (2008), 803–808 | DOI | MR | Zbl

[15] T. Ransford, Potential theory in the complex plane, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[16] F. Peherstorfer, R. Steinbauer, “Strong asymptotics of orthonormal polynomials with the aid of Green's function”, SIAM J. Math. Anal., 32 (2000), 385–402 | DOI | MR | Zbl