On polynomials with constraints on circular arcs
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 74-83

Voir la notice de l'article provenant de la source Math-Net.Ru

For polynomials with prescribed minimal and maximal values of their moduli on a collection of circular arcs it is shown that new covering and distortion theorems and a modulus estimates for a product of leading and free coefficients follow from a majorization principle for meromorphic functions proved by the authors earlier. As corollaries, recent results on polynomials with additional constraints on zeros established by other mathematicians are obtained.
@article{ZNSL_2011_392_a3,
     author = {V. N. Dubinin and S. I. Kalmukov},
     title = {On polynomials with constraints on circular arcs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {74--83},
     publisher = {mathdoc},
     volume = {392},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
AU  - S. I. Kalmukov
TI  - On polynomials with constraints on circular arcs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 74
EP  - 83
VL  - 392
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a3/
LA  - ru
ID  - ZNSL_2011_392_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%A S. I. Kalmukov
%T On polynomials with constraints on circular arcs
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 74-83
%V 392
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a3/
%G ru
%F ZNSL_2011_392_a3
V. N. Dubinin; S. I. Kalmukov. On polynomials with constraints on circular arcs. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 74-83. http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a3/