On summatory functions for automorphic $L$-functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 202-217

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\lambda_f(n)$ denote the $n$th normalized Fourier coefficient of a primitive holomorphic cusp form $f$ for the full modular group. Let $\Delta(x,f\otimes f)$ be the error term in the asymptotic formula of Rankin and Selberg for $$ \sum_{n\le x}\lambda_f(n)^2. $$ It is proved that $\Delta(x,f\otimes f)=\Omega(x^{3/8})$ and $$ \sum_{n\le x}\lambda_f(n^2)=\Omega(x^{1/3}). $$ Other summatory functions associated with automorphic $L$-functions are also studied.
@article{ZNSL_2011_392_a10,
     author = {O. M. Fomenko},
     title = {On summatory functions for automorphic $L$-functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {202--217},
     publisher = {mathdoc},
     volume = {392},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a10/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On summatory functions for automorphic $L$-functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 202
EP  - 217
VL  - 392
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a10/
LA  - ru
ID  - ZNSL_2011_392_a10
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On summatory functions for automorphic $L$-functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 202-217
%V 392
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a10/
%G ru
%F ZNSL_2011_392_a10
O. M. Fomenko. On summatory functions for automorphic $L$-functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 202-217. http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a10/