On summatory functions for automorphic $L$-functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 202-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\lambda_f(n)$ denote the $n$th normalized Fourier coefficient of a primitive holomorphic cusp form $f$ for the full modular group. Let $\Delta(x,f\otimes f)$ be the error term in the asymptotic formula of Rankin and Selberg for $$ \sum_{n\le x}\lambda_f(n)^2. $$ It is proved that $\Delta(x,f\otimes f)=\Omega(x^{3/8})$ and $$ \sum_{n\le x}\lambda_f(n^2)=\Omega(x^{1/3}). $$ Other summatory functions associated with automorphic $L$-functions are also studied.
@article{ZNSL_2011_392_a10,
     author = {O. M. Fomenko},
     title = {On summatory functions for automorphic $L$-functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {202--217},
     year = {2011},
     volume = {392},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a10/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On summatory functions for automorphic $L$-functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 202
EP  - 217
VL  - 392
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a10/
LA  - ru
ID  - ZNSL_2011_392_a10
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On summatory functions for automorphic $L$-functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 202-217
%V 392
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a10/
%G ru
%F ZNSL_2011_392_a10
O. M. Fomenko. On summatory functions for automorphic $L$-functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 202-217. http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a10/

[1] G. Shimura, “On the holomorphy of certain Dirichlet series”, Proc. London Math. Soc., 31 (1975), 79–98 | DOI | MR | Zbl

[2] R. A. Rankin, “Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. II. The order of the Fourier coefficients of integral modular forms”, Proc. Cambridge Phil. Soc., 35 (1939), 357–372 ; “III. A note on the sum function of the Fourier coefficients of integral modular forms”, Proc. Cambridge Phil. Soc., 36 (1940), 150–151 | DOI | MR | Zbl | DOI | MR | Zbl

[3] A. Selberg, “Bemerkungen über eine Dirichletsche Reine, die mit der Theorie der Modulformen nahe verbunden ist”, Arch. Math. Naturvid., 43 (1940), 47–50 | MR

[4] E. Hecke, Mathematische Werke, Vandenhoeck und Ruprecht, Göttingen, 1983 | MR | Zbl

[5] A. Walficz, “Über die Koeffizientensummen einiger Modulformen”, Math. Ann., 108 (1933), 75–90 | DOI | MR

[6] O. M. Fomenko, “Prilozheniya teorii modulyarnykh form k teorii chisel”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 15, VINITI, M., 1977, 5–91 | MR | Zbl

[7] J. L. Hafner, A. Ivić, “On sums of Fourier coefficients of cusp forms”, L'Enseignement Mathématique, 35 (1989), 375–382 | MR | Zbl

[8] H. Joris, “$\Omega$-ätze für gewisse multiplikative arithmetische Funktionen”, Comment. Math. Helv., 48 (1973), 409–435 | DOI | MR | Zbl

[9] O. M. Fomenko, “Teoremy o srednikh znacheniya dlya odnogo klassa ryadov Dirikhle”, Zap. nauchn. semin. POMI, 357, 2008, 201–223 | Zbl

[10] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., revised by D. R. Heath-Brown, New York, 1986 | MR | Zbl

[11] M. Jutila, Lectures on a method in the theory of exponential sums, Tata Institute of Fundamental Research, Bombay, 1987 | MR | Zbl

[12] R. Balasubramanian, K. Ramachandra, “Some problems of analytic number theory. III”, Hardy–Ramanujan J., 4 (1981), 13–40 | MR | Zbl

[13] A. Sankaranarayanan, K. Srinivas, “On a method of Balasubramanian and Ramachandra (on the Abelian group problem)”, Rend. Sem. Mat. Univ. Padova, 97 (1997), 135–161 | MR | Zbl

[14] A. Ivić, “Large values of certain number-theoretic error terms”, Acta Arithm., 56 (1990), 135–159 | MR | Zbl

[15] A. B. Voronetskii, “Analog teoremy Khardi dlya koeffitsientov Fure parabolicheskikh form”, Avtomorfnye funktsii i teoriya chisel, Izhevsk, 1987, 56–64 | MR

[16] R. Balasubramanian, K. Ramachandra, M. V. Subbarao, “On the error function in the asymptotic formula for the counting function of $k$-full numbers”, Acta Arithm., 50 (1988), 107–118 | MR | Zbl

[17] H. L. Montgomery, R. C. Vaughan, “Hilbert's inequality”, J. London Math. Soc. (2), 8 (1974), 73–82 | DOI | MR | Zbl

[18] C. J. Moreno, F. Shahidi, “The fourth moment of the Ramanujan $\tau$-function”, Math. Ann., 266 (1983), 233–239 | DOI | MR | Zbl

[19] R. Balasubramanian, K. Ramachandra, “Progress towards a conjecture on the mean value of Titchmarsch series. III”, Acta Arithm., 45 (1986), 309–318 | MR | Zbl

[20] O. M. Fomenko, “Tozhdestva, vklyuchayuschie koeffitsienty avtomorfnykh $L$-funktsii”, Zap. nauchn. semin. POMI, 314, 2004, 247–256 | MR | Zbl

[21] Y.-K. Lau, G. S. Lü, Sums of Fourier coefficients of cusp forms, 28 pp. http://hkumath.hku.hk/~imr/IMRPreprintSeries/2010/IMR2010-9.pdf | MR

[22] O. M. Fomenko, “Teoremy s srednikh znacheniyakh dlya avtomorfnykh $L$-funktsii”, Algebra i analiz, 19:5 (2007), 246–264 | MR