On the norms of generalized translation operators generated by Dunkl-type operators
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 5-31

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper establishes the integral representation and improves the norm estimate for the generalized translation operators generated by Dunkl-type operators $$ \Lambda f(x)=f'(x)+\frac{A'(x)}{A(x)}\,\frac{f(x)-f(-x)}2 $$ in the spaces $L_p(\mathbb R)$ with weight $A$. Under some natural conditions on the function $A$, it is proved that these norms do not exceed two.
@article{ZNSL_2011_392_a0,
     author = {O. L. Vinogradov},
     title = {On the norms of generalized translation operators generated by {Dunkl-type} operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--31},
     publisher = {mathdoc},
     volume = {392},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a0/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - On the norms of generalized translation operators generated by Dunkl-type operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 5
EP  - 31
VL  - 392
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a0/
LA  - ru
ID  - ZNSL_2011_392_a0
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T On the norms of generalized translation operators generated by Dunkl-type operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 5-31
%V 392
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a0/
%G ru
%F ZNSL_2011_392_a0
O. L. Vinogradov. On the norms of generalized translation operators generated by Dunkl-type operators. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 5-31. http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a0/