On the norms of generalized translation operators generated by Dunkl-type operators
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 5-31
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper establishes the integral representation and improves the norm estimate for the generalized translation operators generated by Dunkl-type operators 
$$
\Lambda f(x)=f'(x)+\frac{A'(x)}{A(x)}\,\frac{f(x)-f(-x)}2
$$
in the spaces $L_p(\mathbb R)$ with weight $A$. Under some natural conditions on the function $A$, it is proved that these norms do not exceed two.
			
            
            
            
          
        
      @article{ZNSL_2011_392_a0,
     author = {O. L. Vinogradov},
     title = {On the norms of generalized translation operators generated by {Dunkl-type} operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--31},
     publisher = {mathdoc},
     volume = {392},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a0/}
}
                      
                      
                    O. L. Vinogradov. On the norms of generalized translation operators generated by Dunkl-type operators. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 5-31. http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a0/