On the norms of generalized translation operators generated by Dunkl-type operators
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 5-31
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper establishes the integral representation and improves the norm estimate for the generalized translation operators generated by Dunkl-type operators $$ \Lambda f(x)=f'(x)+\frac{A'(x)}{A(x)}\,\frac{f(x)-f(-x)}2 $$ in the spaces $L_p(\mathbb R)$ with weight $A$. Under some natural conditions on the function $A$, it is proved that these norms do not exceed two.
@article{ZNSL_2011_392_a0,
     author = {O. L. Vinogradov},
     title = {On the norms of generalized translation operators generated by {Dunkl-type} operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--31},
     year = {2011},
     volume = {392},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a0/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - On the norms of generalized translation operators generated by Dunkl-type operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 5
EP  - 31
VL  - 392
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a0/
LA  - ru
ID  - ZNSL_2011_392_a0
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T On the norms of generalized translation operators generated by Dunkl-type operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 5-31
%V 392
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a0/
%G ru
%F ZNSL_2011_392_a0
O. L. Vinogradov. On the norms of generalized translation operators generated by Dunkl-type operators. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 5-31. http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a0/

[1] H. Chébli, “Sturm–Liouville hypergroups”, Applications of hypergroup and related measure algebras (Seattle, WA, 1993), Contemp. Math., 183, Amer. Math. Soc., Providence, RI, 1995, 71–88 | DOI | MR

[2] K. Trimèche, “Transformation intégrale de Weyl et théorème de Paley–Wiener associés à un opérateur différentiel singulier sur $(0,\infty)$”, J. Math. Pures Appl., 60:1 (1981), 51–98 | MR | Zbl

[3] H. Chébli, “Sur un théorème de Paley–Wiener associé à la décomposition spectrale d'un opérateur de Sturm–Liouville sur $]0,+\infty[$ convolution”, J. Funct. Anal., 17 (1974), 447–461 | DOI | MR | Zbl

[4] L. Brandolini, G. Gigante, “Equiconvergence theorems for Chébli–Trimèche hypergroups”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 8:2 (2009), 211–265 | MR | Zbl

[5] W. Bloom, Z. Xu, “The Hardy–Littlewood maximal function for Chébli–Trimèche hypergroups”, Applications of hypergroup and related measure algebras (Seattle, WA, 1993), Contemp. Math., 183, Amer. Math. Soc., Providence, RI, 1995, 45–70 | DOI | MR

[6] G. Vatson, Teoriya besselevykh funktsii, v. I, M., 1949

[7] M. Flensted-Jensen, T. Koornwinder, “The convolution structure for Jacobi function expansion”, Ark. Mat., 10 (1973), 245–262 | DOI | MR | Zbl

[8] A. Fitouhi, M. M. Hamza, “Uniform expansion for the eigenfunction of a singular second-order differential operator”, SIAM J. Math. Anal., 21 (1990), 1619–1632 | DOI | MR | Zbl

[9] O. Bracco, Fonction maximale associée à des opérateurs de Sturm–Liouville singuliers, These, Université Louis Pasteur, Strasbourg, 1999 | MR

[10] H. Chébli, “Opérateurs de translation généralisée et semi-groupes de convolution”, Lect. Notes Math., 404, 1974, 35–59 | DOI | MR | Zbl

[11] B. L. J. Braaksma, H. S. V. de Snoo, “Generalized translation operators associated with a singular differential operator”, Lect. Notes Math., 415, 1974, 62–77 | DOI | MR | Zbl

[12] W. C. Connett, C. Markett, A. L. Schwartz, “Product formulas and convolutions for angular and radial spheroidal wave functions”, Trans. Amer. Math. Soc., 338:2 (1993), 695–710 | DOI | MR | Zbl

[13] W. C. Connett, C. Markett, A. L. Schwartz, “Product formulas and convolutions for the radial oblate spheroidal wave functions”, Methods Appl. Anal., 6:3 (1999), 347–361 | MR | Zbl

[14] C. F. Dunkl, “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR | Zbl

[15] M. Rösler, “Dunkl operators: theory and applications”, Lect. Notes Math., 1817, 2003, 93–135 | DOI | MR | Zbl

[16] M. A. Mourou, K. Trimèche, “Transmutation operators and Paley–Wiener theorem associated with a singular differential-difference operator on the real line”, Anal. Appl., 1:1 (2003), 43–70 | DOI | MR | Zbl

[17] M. A. Mourou, “Transmutation operators associated with a Dunkl-type differential-difference operator on the real line and certain of their applications”, Integral Transform. Spec. Funct., 12:1 (2001), 77–88 | DOI | MR | Zbl

[18] M. Rösler, “Bessel-type signed hypergroups on $\mathbb R$”, Probability measures on groups and related structures (Oberwolfach, 1994), v. XI, World Sci. Publ., River Edge, NJ, 1995, 292–304 | MR | Zbl

[19] N. Ben Salem, A. Ould Ahmed Salem, “Convolution structure associated with the Jacobi–Dunkl operator on $\mathbb R$”, Ramanujan Journal, 12 (2006), 359–378 | DOI | MR | Zbl

[20] I. M. Gelfand, N. Ya. Vilenkin, Obobschennye funktsii, v. 4, Nekotorye primeneniya garmonicheskogo analiza. Osnaschennye gilbertovy prostranstva, M., 1961

[21] M. Rösler, “A positive radial product formula for the Dunkl kernel”, Trans. Amer. Math. Soc., 355:6 (2003), 2413–2438 | DOI | MR | Zbl

[22] S. Thangavelu, Y. Xu, “Convolution operator and maximal function for the Dunkl transform”, J. Anal. Math., 97 (2005), 25–55 | DOI | MR

[23] R. Edvards, Ryady Fure v sovremennom izlozhenii, v. 2, M., 1985

[24] N. P. Korneichuk, Tochnye konstanty v teorii priblizheniya, M., 1987 | MR