@article{ZNSL_2011_391_a8,
author = {S. A. Obraztsova and A. V. Pastor},
title = {About vertices of degree~$k$ of minimally and contraction critically $k$-connected graphs: upper bounds},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {198--210},
year = {2011},
volume = {391},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a8/}
}
TY - JOUR AU - S. A. Obraztsova AU - A. V. Pastor TI - About vertices of degree $k$ of minimally and contraction critically $k$-connected graphs: upper bounds JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 198 EP - 210 VL - 391 UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a8/ LA - ru ID - ZNSL_2011_391_a8 ER -
%0 Journal Article %A S. A. Obraztsova %A A. V. Pastor %T About vertices of degree $k$ of minimally and contraction critically $k$-connected graphs: upper bounds %J Zapiski Nauchnykh Seminarov POMI %D 2011 %P 198-210 %V 391 %U http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a8/ %G ru %F ZNSL_2011_391_a8
S. A. Obraztsova; A. V. Pastor. About vertices of degree $k$ of minimally and contraction critically $k$-connected graphs: upper bounds. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 198-210. http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a8/
[1] K. Ando, A. Kaneko, K. Kawarabayashi, “Vertices of degree 5 in a contraction critically 5-connected graphs”, Graphs Combin., 21 (2005), 27–37 | DOI | MR | Zbl
[2] K. Ando, A. Kaneko, K. Kawarabayashi, “Vertices of degree 6 in a contraction critically 6-connected graphs”, Discrete Mathematics, 273 (2003), 55–69 | DOI | MR | Zbl
[3] R. Halin, “A theorem on $n$-connected graphs”, J. Comb. Theory, 7 (1969), 150–154 | DOI | MR | Zbl
[4] R. Halin, “On the structure of $n$-connected graphs”, Recent Progress in Combinatorics, ed. W. T. Tutte, Academic Press, London–New York, 1969, 91–102 | MR
[5] F. Göring, “Short proof of Menger's theorem”, Discrete Math., 219:1–3 (2000), 295–296 | DOI | MR | Zbl
[6] M. Li, X. Yuan, J. Su, “The number of vertices of degree 7 in a contraction-critical 7-connected graph”, Discrete Mathematics, 308 (2008), 6262–6268 | DOI | MR | Zbl
[7] W. Mader, “Zur Struktur minimal $n$-fach zusammenhängenden Graphen”, Abh. Math. Sem. Univ. (Hamburg), 49 (1979), 49–69 (German) | DOI | MR | Zbl
[8] K. Menger, “Zur allgemeinen Kurventheorie”, Fund. Math., 10 (1927), 96–115 | Zbl
[9] W. T. Tutte, “A theory of 3-connected graphs”, Indag. Math., 23 (1961), 441–455 | MR