About vertices of degree~$k$ of minimally and contraction critically $k$-connected graphs: upper bounds
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 198-210
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the article [4], R. Halin asked, what the constant $c_k$ such that any minimally and contraction critically $k$-connected graph has at least $c_k|V(G)|$ vertices of degree $k$. Exact bound for $k=4$ ($c_4=1$) and no upper bound for larger $k$ is known now. We found upper bounds for $c_k$ for $k\geq5$.
			
            
            
            
          
        
      @article{ZNSL_2011_391_a8,
     author = {S. A. Obraztsova and A. V. Pastor},
     title = {About vertices of degree~$k$ of minimally and contraction critically $k$-connected graphs: upper bounds},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {198--210},
     publisher = {mathdoc},
     volume = {391},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a8/}
}
                      
                      
                    TY - JOUR AU - S. A. Obraztsova AU - A. V. Pastor TI - About vertices of degree~$k$ of minimally and contraction critically $k$-connected graphs: upper bounds JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 198 EP - 210 VL - 391 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a8/ LA - ru ID - ZNSL_2011_391_a8 ER -
%0 Journal Article %A S. A. Obraztsova %A A. V. Pastor %T About vertices of degree~$k$ of minimally and contraction critically $k$-connected graphs: upper bounds %J Zapiski Nauchnykh Seminarov POMI %D 2011 %P 198-210 %V 391 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a8/ %G ru %F ZNSL_2011_391_a8
S. A. Obraztsova; A. V. Pastor. About vertices of degree~$k$ of minimally and contraction critically $k$-connected graphs: upper bounds. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 198-210. http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a8/