About vertices of degree~$k$ of minimally and contraction critically $k$-connected graphs: upper bounds
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 198-210

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article [4], R. Halin asked, what the constant $c_k$ such that any minimally and contraction critically $k$-connected graph has at least $c_k|V(G)|$ vertices of degree $k$. Exact bound for $k=4$ ($c_4=1$) and no upper bound for larger $k$ is known now. We found upper bounds for $c_k$ for $k\geq5$.
@article{ZNSL_2011_391_a8,
     author = {S. A. Obraztsova and A. V. Pastor},
     title = {About vertices of degree~$k$ of minimally and contraction critically $k$-connected graphs: upper bounds},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {198--210},
     publisher = {mathdoc},
     volume = {391},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a8/}
}
TY  - JOUR
AU  - S. A. Obraztsova
AU  - A. V. Pastor
TI  - About vertices of degree~$k$ of minimally and contraction critically $k$-connected graphs: upper bounds
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 198
EP  - 210
VL  - 391
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a8/
LA  - ru
ID  - ZNSL_2011_391_a8
ER  - 
%0 Journal Article
%A S. A. Obraztsova
%A A. V. Pastor
%T About vertices of degree~$k$ of minimally and contraction critically $k$-connected graphs: upper bounds
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 198-210
%V 391
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a8/
%G ru
%F ZNSL_2011_391_a8
S. A. Obraztsova; A. V. Pastor. About vertices of degree~$k$ of minimally and contraction critically $k$-connected graphs: upper bounds. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 198-210. http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a8/