About vertices of degree $k$ of minimally and contraction critically $k$-connected graphs: upper bounds
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 198-210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the article [4], R. Halin asked, what the constant $c_k$ such that any minimally and contraction critically $k$-connected graph has at least $c_k|V(G)|$ vertices of degree $k$. Exact bound for $k=4$ ($c_4=1$) and no upper bound for larger $k$ is known now. We found upper bounds for $c_k$ for $k\geq5$.
@article{ZNSL_2011_391_a8,
     author = {S. A. Obraztsova and A. V. Pastor},
     title = {About vertices of degree~$k$ of minimally and contraction critically $k$-connected graphs: upper bounds},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {198--210},
     year = {2011},
     volume = {391},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a8/}
}
TY  - JOUR
AU  - S. A. Obraztsova
AU  - A. V. Pastor
TI  - About vertices of degree $k$ of minimally and contraction critically $k$-connected graphs: upper bounds
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 198
EP  - 210
VL  - 391
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a8/
LA  - ru
ID  - ZNSL_2011_391_a8
ER  - 
%0 Journal Article
%A S. A. Obraztsova
%A A. V. Pastor
%T About vertices of degree $k$ of minimally and contraction critically $k$-connected graphs: upper bounds
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 198-210
%V 391
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a8/
%G ru
%F ZNSL_2011_391_a8
S. A. Obraztsova; A. V. Pastor. About vertices of degree $k$ of minimally and contraction critically $k$-connected graphs: upper bounds. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 198-210. http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a8/

[1] K. Ando, A. Kaneko, K. Kawarabayashi, “Vertices of degree 5 in a contraction critically 5-connected graphs”, Graphs Combin., 21 (2005), 27–37 | DOI | MR | Zbl

[2] K. Ando, A. Kaneko, K. Kawarabayashi, “Vertices of degree 6 in a contraction critically 6-connected graphs”, Discrete Mathematics, 273 (2003), 55–69 | DOI | MR | Zbl

[3] R. Halin, “A theorem on $n$-connected graphs”, J. Comb. Theory, 7 (1969), 150–154 | DOI | MR | Zbl

[4] R. Halin, “On the structure of $n$-connected graphs”, Recent Progress in Combinatorics, ed. W. T. Tutte, Academic Press, London–New York, 1969, 91–102 | MR

[5] F. Göring, “Short proof of Menger's theorem”, Discrete Math., 219:1–3 (2000), 295–296 | DOI | MR | Zbl

[6] M. Li, X. Yuan, J. Su, “The number of vertices of degree 7 in a contraction-critical 7-connected graph”, Discrete Mathematics, 308 (2008), 6262–6268 | DOI | MR | Zbl

[7] W. Mader, “Zur Struktur minimal $n$-fach zusammenhängenden Graphen”, Abh. Math. Sem. Univ. (Hamburg), 49 (1979), 49–69 (German) | DOI | MR | Zbl

[8] K. Menger, “Zur allgemeinen Kurventheorie”, Fund. Math., 10 (1927), 96–115 | Zbl

[9] W. T. Tutte, “A theory of 3-connected graphs”, Indag. Math., 23 (1961), 441–455 | MR