@article{ZNSL_2011_391_a7,
author = {S. A. Obraztsova},
title = {Local structure of 9 and 10-connected graphs},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {157--197},
year = {2011},
volume = {391},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a7/}
}
S. A. Obraztsova. Local structure of 9 and 10-connected graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 157-197. http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a7/
[1] K. Ando, “A Local structure theorem on 5-connected graphs”, J. Graph Theory, 60 (2009), 99–129 | DOI | MR | Zbl
[2] K. Ando, A. Kaneko, K. Kawarabayashi, “Vertices of degree 6 in a contraction critically 6-connected graphs”, Discrete Mathematics, 273 (2003), 55–69 | DOI | MR | Zbl
[3] Y. Egawa, “Contractible edges in $n$-connected graphs with minimum degree greater than or equal to $\frac{5n}4$”, Graphs Combin., 7 (1991), 15–21 | DOI | MR | Zbl
[4] M. Fontet, “Graphes 4-essentiels”, C. R. Acad. Se. Paris Ser. A, 287 (1978), 289–290 | MR | Zbl
[5] R. Halin, “A theorem on $n$-connected graphs”, J. Comb. Theory, 7 (1969), 150–154 | DOI | MR | Zbl
[6] D. V.Karpov, A. V. Pastor, “O strukture $k$-svyaznogo grafa”, Zap. nauchn. semin. POMI, 266, 2000, 76–106 | MR | Zbl
[7] M. Kriesell, “A degree sum condition for the existence of a contractible edge in a $k$-connected graph”, J. Combin. Theory Ser. B, 82:1 (2001), 81–101 | DOI | MR | Zbl
[8] M. Li, X. Yuan, J. Su, “The number of vertices of degree 7 in a contraction-critical 7-connected graph”, Discrete Mathematics, 308 (2008), 6262–6268 | DOI | MR | Zbl
[9] W. Mader, “Ecken Vom Gard $n$ in minimalen $n$-fach zusammenhangenden Graphen”, Arch. Math. (Basel), 23 (1972), 219–224 (German) | DOI | MR | Zbl
[10] W. Mader, “Generalizations of critical connectivity of graphs”, Discrete Mathematics, 72 (1988), 267–283 | DOI | MR | Zbl
[11] N. Martinov, “A recursive characterization of the 4-connected graphs”, Discrete Mathematics, 84 (1990), 105–108 | DOI | MR | Zbl
[12] S. A. Obraztsova, “O lokalnoi strukture 5 i 6-svyaznykh grafov”, Zap. nauchn. semin. POMI, 381, 2010, 88–96 | MR
[13] S. A. Obraztsova, A. V. Pastor, “O lokalnoi strukture 7 i 8-svyaznykh grafov”, Zap. nauchn. semin. POMI, 381, 2010, 97–111 | MR
[14] C. Qin, X. Yuan, J. Su, “Some properties of contraction-critical 5-connected graphs”, Discrete Mathematics, 308 (2008), 5742–5756 | DOI | MR | Zbl
[15] C. Qin, X. Yuan, J. Su, “Triangles in contraction critical 5-connected graphs”, Australas. J. Combin., 33 (2005), 139–146 | MR | Zbl
[16] C. Thomassen, “Non-separating cycles in $k$-connected graphs”, J. Graph Theory, 5 (1981), 351–354 | DOI | MR | Zbl
[17] W. T. Tutte, “A theory of 3-connected graphs”, Indag. Math., 23 (1961), 441–455 | MR
[18] X. Yuan, J. Su, “Contractible Edges in 7-Connected Graphs”, Graphs and Combinatorics, 21 (2005), 445–457 | DOI | MR | Zbl