Local structure of 9 and 10-connected graphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 157-197

Voir la notice de l'article provenant de la source Math-Net.Ru

In his paper R. Halin (in “Recent Progress in Combinatorics”, Academic Press, 1969) discusses, what is the constant $c_k$ such that any minimally and contraction critically $k$-connected graph has at least $c_k|V(G)|$ vertices of degree $k$. Twenty years later the exact bound for $k=4$ ($c_4=1$) was found by N. Martinov and, independently, by M. Fontet. For larger $k$ exact bounds are unknown. This paper contributes to the study of local structure of minimally and contraction critically $k$-connected graphs and lower bounds for $c_k$. It was proved that $c_k\geq\frac12$ for $k=9,10$. This result extends the sequence of the lower bounds for $c_k$ which is equal to $\frac12$ to $k=6,7,8,9,10$.
@article{ZNSL_2011_391_a7,
     author = {S. A. Obraztsova},
     title = {Local structure of 9 and 10-connected graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--197},
     publisher = {mathdoc},
     volume = {391},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a7/}
}
TY  - JOUR
AU  - S. A. Obraztsova
TI  - Local structure of 9 and 10-connected graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 157
EP  - 197
VL  - 391
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a7/
LA  - ru
ID  - ZNSL_2011_391_a7
ER  - 
%0 Journal Article
%A S. A. Obraztsova
%T Local structure of 9 and 10-connected graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 157-197
%V 391
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a7/
%G ru
%F ZNSL_2011_391_a7
S. A. Obraztsova. Local structure of 9 and 10-connected graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 157-197. http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a7/