Local structure of 9 and 10-connected graphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 157-197 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In his paper R. Halin (in “Recent Progress in Combinatorics”, Academic Press, 1969) discusses, what is the constant $c_k$ such that any minimally and contraction critically $k$-connected graph has at least $c_k|V(G)|$ vertices of degree $k$. Twenty years later the exact bound for $k=4$ ($c_4=1$) was found by N. Martinov and, independently, by M. Fontet. For larger $k$ exact bounds are unknown. This paper contributes to the study of local structure of minimally and contraction critically $k$-connected graphs and lower bounds for $c_k$. It was proved that $c_k\geq\frac12$ for $k=9,10$. This result extends the sequence of the lower bounds for $c_k$ which is equal to $\frac12$ to $k=6,7,8,9,10$.
@article{ZNSL_2011_391_a7,
     author = {S. A. Obraztsova},
     title = {Local structure of 9 and 10-connected graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--197},
     year = {2011},
     volume = {391},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a7/}
}
TY  - JOUR
AU  - S. A. Obraztsova
TI  - Local structure of 9 and 10-connected graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 157
EP  - 197
VL  - 391
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a7/
LA  - ru
ID  - ZNSL_2011_391_a7
ER  - 
%0 Journal Article
%A S. A. Obraztsova
%T Local structure of 9 and 10-connected graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 157-197
%V 391
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a7/
%G ru
%F ZNSL_2011_391_a7
S. A. Obraztsova. Local structure of 9 and 10-connected graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 157-197. http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a7/

[1] K. Ando, “A Local structure theorem on 5-connected graphs”, J. Graph Theory, 60 (2009), 99–129 | DOI | MR | Zbl

[2] K. Ando, A. Kaneko, K. Kawarabayashi, “Vertices of degree 6 in a contraction critically 6-connected graphs”, Discrete Mathematics, 273 (2003), 55–69 | DOI | MR | Zbl

[3] Y. Egawa, “Contractible edges in $n$-connected graphs with minimum degree greater than or equal to $\frac{5n}4$”, Graphs Combin., 7 (1991), 15–21 | DOI | MR | Zbl

[4] M. Fontet, “Graphes 4-essentiels”, C. R. Acad. Se. Paris Ser. A, 287 (1978), 289–290 | MR | Zbl

[5] R. Halin, “A theorem on $n$-connected graphs”, J. Comb. Theory, 7 (1969), 150–154 | DOI | MR | Zbl

[6] D. V.Karpov, A. V. Pastor, “O strukture $k$-svyaznogo grafa”, Zap. nauchn. semin. POMI, 266, 2000, 76–106 | MR | Zbl

[7] M. Kriesell, “A degree sum condition for the existence of a contractible edge in a $k$-connected graph”, J. Combin. Theory Ser. B, 82:1 (2001), 81–101 | DOI | MR | Zbl

[8] M. Li, X. Yuan, J. Su, “The number of vertices of degree 7 in a contraction-critical 7-connected graph”, Discrete Mathematics, 308 (2008), 6262–6268 | DOI | MR | Zbl

[9] W. Mader, “Ecken Vom Gard $n$ in minimalen $n$-fach zusammenhangenden Graphen”, Arch. Math. (Basel), 23 (1972), 219–224 (German) | DOI | MR | Zbl

[10] W. Mader, “Generalizations of critical connectivity of graphs”, Discrete Mathematics, 72 (1988), 267–283 | DOI | MR | Zbl

[11] N. Martinov, “A recursive characterization of the 4-connected graphs”, Discrete Mathematics, 84 (1990), 105–108 | DOI | MR | Zbl

[12] S. A. Obraztsova, “O lokalnoi strukture 5 i 6-svyaznykh grafov”, Zap. nauchn. semin. POMI, 381, 2010, 88–96 | MR

[13] S. A. Obraztsova, A. V. Pastor, “O lokalnoi strukture 7 i 8-svyaznykh grafov”, Zap. nauchn. semin. POMI, 381, 2010, 97–111 | MR

[14] C. Qin, X. Yuan, J. Su, “Some properties of contraction-critical 5-connected graphs”, Discrete Mathematics, 308 (2008), 5742–5756 | DOI | MR | Zbl

[15] C. Qin, X. Yuan, J. Su, “Triangles in contraction critical 5-connected graphs”, Australas. J. Combin., 33 (2005), 139–146 | MR | Zbl

[16] C. Thomassen, “Non-separating cycles in $k$-connected graphs”, J. Graph Theory, 5 (1981), 351–354 | DOI | MR | Zbl

[17] W. T. Tutte, “A theory of 3-connected graphs”, Indag. Math., 23 (1961), 441–455 | MR

[18] X. Yuan, J. Su, “Contractible Edges in 7-Connected Graphs”, Graphs and Combinatorics, 21 (2005), 445–457 | DOI | MR | Zbl