An upper bound on the chromatic number of circle graphs without $K_4$
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 149-156
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a circle graph without clique on 4 vertices. We proof that the chromatic number of $G$ doesn't exceed 30.
@article{ZNSL_2011_391_a6,
author = {G. V. Nenashev},
title = {An upper bound on the chromatic number of circle graphs without $K_4$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {149--156},
publisher = {mathdoc},
volume = {391},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a6/}
}
G. V. Nenashev. An upper bound on the chromatic number of circle graphs without $K_4$. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 149-156. http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a6/