An upper bound on the chromatic number of circle graphs without $K_4$
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 149-156

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a circle graph without clique on 4 vertices. We proof that the chromatic number of $G$ doesn't exceed 30.
@article{ZNSL_2011_391_a6,
     author = {G. V. Nenashev},
     title = {An upper bound on the chromatic number of circle graphs without $K_4$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--156},
     publisher = {mathdoc},
     volume = {391},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a6/}
}
TY  - JOUR
AU  - G. V. Nenashev
TI  - An upper bound on the chromatic number of circle graphs without $K_4$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 149
EP  - 156
VL  - 391
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a6/
LA  - ru
ID  - ZNSL_2011_391_a6
ER  - 
%0 Journal Article
%A G. V. Nenashev
%T An upper bound on the chromatic number of circle graphs without $K_4$
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 149-156
%V 391
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a6/
%G ru
%F ZNSL_2011_391_a6
G. V. Nenashev. An upper bound on the chromatic number of circle graphs without $K_4$. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 149-156. http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a6/