An upper bound on the chromatic number of circle graphs without $K_4$
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 149-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G$ be a circle graph without clique on 4 vertices. We proof that the chromatic number of $G$ doesn't exceed 30.
@article{ZNSL_2011_391_a6,
     author = {G. V. Nenashev},
     title = {An upper bound on the chromatic number of circle graphs without $K_4$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--156},
     year = {2011},
     volume = {391},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a6/}
}
TY  - JOUR
AU  - G. V. Nenashev
TI  - An upper bound on the chromatic number of circle graphs without $K_4$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 149
EP  - 156
VL  - 391
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a6/
LA  - ru
ID  - ZNSL_2011_391_a6
ER  - 
%0 Journal Article
%A G. V. Nenashev
%T An upper bound on the chromatic number of circle graphs without $K_4$
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 149-156
%V 391
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a6/
%G ru
%F ZNSL_2011_391_a6
G. V. Nenashev. An upper bound on the chromatic number of circle graphs without $K_4$. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 149-156. http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a6/

[1] A. V. Kostochka, “On upper bounds for the chromatic numbers of graphs”, Trudy Inst. Math., 10 (1988), 204–226 | MR | Zbl

[2] A. A. Ageev, “A triangle-free circle graph with chromatic number 5”, Discr. Math., 152 (1996), 295–298 | DOI | MR | Zbl

[3] A. V. Kostochka, J. Kratochvil, “Covering and coloring polygon-circle graphs”, Discr. Math., 163 (1997), 299–305 | DOI | MR | Zbl

[4] A. A. Ageev, “Every circle graph of girth at least 5 is 3-colourable”, Discr. Math., 195 (1999), 229–233 | DOI | MR | Zbl

[5] A. V. Kostochka, “Coloring intersection graphs of geometric figures with a given clique number”, Contemp. Math., 342 (2004), 127–138 | DOI | MR | Zbl

[6] J. Cerny, “Coloring circle graphs”, Electr. Notes Discr. Math., 29 (2007), 457–461 | DOI | Zbl

[7] A. V. Kostochka, K. G. Milans, Coloring clean and $K_4$-free circle graphs, 2011, submitted