On proper colorings of hypergraphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 79-89
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathcal H$ be a hypergraph with maximal vertex degree $\Delta$, such that each hyperedge of it has at least $\delta$ vertices. Let $k=\lceil\frac{2\Delta}\delta\rceil$. We prove that $\mathcal H$ admits a proper vertex coloring with $k+1$ colors, (i.e., in any hyperedge there should be at least two vertices of different colors). For $k\ge3$ and $\delta\ge3$ we prove that $\mathcal H$ admits a proper vertex coloring with $k$ colors.
For a graph $G$ set $k=\lceil\frac{2\Delta(G)}{\delta(G)}\rceil$. As a corollary we derive that there exists a proper dynamic coloring of the graph $G$ with $k+1$ colors, and for $k\ge3$ and $\delta(G)\ge3$ – with $k$ colors.
@article{ZNSL_2011_391_a4,
author = {N. V. Gravin and D. V. Karpov},
title = {On proper colorings of hypergraphs},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {79--89},
publisher = {mathdoc},
volume = {391},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a4/}
}
N. V. Gravin; D. V. Karpov. On proper colorings of hypergraphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 79-89. http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a4/