On proper colorings of hypergraphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 79-89

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal H$ be a hypergraph with maximal vertex degree $\Delta$, such that each hyperedge of it has at least $\delta$ vertices. Let $k=\lceil\frac{2\Delta}\delta\rceil$. We prove that $\mathcal H$ admits a proper vertex coloring with $k+1$ colors, (i.e., in any hyperedge there should be at least two vertices of different colors). For $k\ge3$ and $\delta\ge3$ we prove that $\mathcal H$ admits a proper vertex coloring with $k$ colors. For a graph $G$ set $k=\lceil\frac{2\Delta(G)}{\delta(G)}\rceil$. As a corollary we derive that there exists a proper dynamic coloring of the graph $G$ with $k+1$ colors, and for $k\ge3$ and $\delta(G)\ge3$ – with $k$ colors.
@article{ZNSL_2011_391_a4,
     author = {N. V. Gravin and D. V. Karpov},
     title = {On proper colorings of hypergraphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {79--89},
     publisher = {mathdoc},
     volume = {391},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a4/}
}
TY  - JOUR
AU  - N. V. Gravin
AU  - D. V. Karpov
TI  - On proper colorings of hypergraphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 79
EP  - 89
VL  - 391
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a4/
LA  - ru
ID  - ZNSL_2011_391_a4
ER  - 
%0 Journal Article
%A N. V. Gravin
%A D. V. Karpov
%T On proper colorings of hypergraphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 79-89
%V 391
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a4/
%G ru
%F ZNSL_2011_391_a4
N. V. Gravin; D. V. Karpov. On proper colorings of hypergraphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 79-89. http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a4/