Generalized flowers in $k$-connected graph
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 45-78

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we research $k$-cutsets in $k$-connected graphs. We introduce generalized flowers and prove some fundamental statements describing their structure. After this we consider generalized flowers in case $k=4$. When $k=4$ we give a complete description of $4$-cutsets lying in a generalized flower.
@article{ZNSL_2011_391_a3,
     author = {A. L. Glazman},
     title = {Generalized flowers in $k$-connected graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {45--78},
     publisher = {mathdoc},
     volume = {391},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a3/}
}
TY  - JOUR
AU  - A. L. Glazman
TI  - Generalized flowers in $k$-connected graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 45
EP  - 78
VL  - 391
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a3/
LA  - ru
ID  - ZNSL_2011_391_a3
ER  - 
%0 Journal Article
%A A. L. Glazman
%T Generalized flowers in $k$-connected graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 45-78
%V 391
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a3/
%G ru
%F ZNSL_2011_391_a3
A. L. Glazman. Generalized flowers in $k$-connected graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 45-78. http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a3/