Generalized flowers in $k$-connected graph
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 45-78
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this article we research $k$-cutsets in $k$-connected graphs. We introduce generalized flowers and prove some fundamental statements describing their structure. After this we consider generalized flowers in case $k=4$. When $k=4$ we give a complete description of $4$-cutsets lying in a generalized flower.
			
            
            
            
          
        
      @article{ZNSL_2011_391_a3,
     author = {A. L. Glazman},
     title = {Generalized flowers in $k$-connected graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {45--78},
     publisher = {mathdoc},
     volume = {391},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a3/}
}
                      
                      
                    A. L. Glazman. Generalized flowers in $k$-connected graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 45-78. http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a3/