On graphs with a large chromatic number containing no small odd cycles
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 35-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We present lower bounds for the number of vertices in a graph with a large chromatic number containing no small odd cycles.
@article{ZNSL_2011_391_a2,
     author = {S. L. Berlov and I. I. Bogdanov},
     title = {On graphs with a~large chromatic number containing no small odd cycles},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {35--44},
     year = {2011},
     volume = {391},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a2/}
}
TY  - JOUR
AU  - S. L. Berlov
AU  - I. I. Bogdanov
TI  - On graphs with a large chromatic number containing no small odd cycles
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 35
EP  - 44
VL  - 391
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a2/
LA  - ru
ID  - ZNSL_2011_391_a2
ER  - 
%0 Journal Article
%A S. L. Berlov
%A I. I. Bogdanov
%T On graphs with a large chromatic number containing no small odd cycles
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 35-44
%V 391
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a2/
%G ru
%F ZNSL_2011_391_a2
S. L. Berlov; I. I. Bogdanov. On graphs with a large chromatic number containing no small odd cycles. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part III, Tome 391 (2011), pp. 35-44. http://geodesic.mathdoc.fr/item/ZNSL_2011_391_a2/

[1] M. Ajtai, J. Komlós, E. Szemerédi, “A note on Ramsey numbers”, J. Combin. Theory A, 29 (1980), 354–360 | DOI | MR | Zbl

[2] P. Erdös, “Graph theory and probability”, Canad. J. Math., 11 (1959), 34–38 | DOI | MR | Zbl

[3] P. Erdös, “Problems and results in graph theory and combinatorial analysis”, Graph Theory and Related Topics, Academic Press, New York, 1979, 153–163 | MR

[4] H. A. Kierstead, E. Szemerédi, W. T. Trotter, “On coloring graphs with locally small chromatic number”, Combinatorica, 4 (1984), 183–185 | DOI | MR | Zbl

[5] J. H. Kim, “The Ramsey Number $R(3,t)$ has order of magnitude $t^2/\log t$”, Random Structures and Algorithms, 7 (1995), 173–207 | DOI | MR | Zbl

[6] A. Schrijver, “Vertex-critical subgraphs of Kneser graphs”, Nieuw Archief voor Wiskunde, 26 (1978), 454–461 | MR | Zbl