Harmonic analysis on the infinite-dimensional unitary group
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 237-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The goal of harmonic analysis on the infinite-dimensional unitary group is to decompose a certain family of unitary representations of this group substituting the nonexisting regular representation and depending on two complex parameters (Olshanski, 2003). In the case of nonintegral parameters, the decomposing measure is described in terms of determinantal point processes (Borodin and Olshanski, 2005). The aim of the present paper is to describe the decomposition for integer parameters; in this case, a spectrum of decomposition leaps. A similar result was earlier obtained for the infinite symmetric group (Kerov, Olshanski, Vershik, 2004), but the case of the unitary group turned out to be much more complicated. In the proof we use Gustafson's multilateral summation formula for hypergeometric series.
@article{ZNSL_2011_390_a9,
     author = {A. A. Osinenko},
     title = {Harmonic analysis on the infinite-dimensional unitary group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {237--285},
     year = {2011},
     volume = {390},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a9/}
}
TY  - JOUR
AU  - A. A. Osinenko
TI  - Harmonic analysis on the infinite-dimensional unitary group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 237
EP  - 285
VL  - 390
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a9/
LA  - ru
ID  - ZNSL_2011_390_a9
ER  - 
%0 Journal Article
%A A. A. Osinenko
%T Harmonic analysis on the infinite-dimensional unitary group
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 237-285
%V 390
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a9/
%G ru
%F ZNSL_2011_390_a9
A. A. Osinenko. Harmonic analysis on the infinite-dimensional unitary group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 237-285. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a9/

[1] A. Borodin, G. Olshanski, “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. of Math., 161:3 (2005), 1319–1422 | DOI | MR | Zbl

[2] V. Gorin, “Disjointness of representations arising in harmonic analysis on the infinite-dimensional unitary group”, Funct. Anal. Appl., 44:2 (2010), 92–105 | DOI | MR | Zbl

[3] R. A. Gustafson, “Multilateral summation theorems for ordinary and basic hypergeometric series in $U(n)$”, SIAM J. Math. Anal., 18:6 (1987), 1576–1596 | DOI | MR | Zbl

[4] G. Olshanski, “The problem of harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 205 (2003), 464–524 | DOI | MR | Zbl

[5] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158 (2004), 551–642 | DOI | MR | Zbl

[6] D. Voiculescu, “Representations factorielles de type $\mathrm{II}_1$ de $U(\infty)$”, J. Math. Pures et Appl., 55 (1976), 1–20 | MR | Zbl