@article{ZNSL_2011_390_a6,
author = {Thierry Champion and Luigi De Pascale},
title = {The {Monge} problem in $\mathbb R^d$: {Variations} on a~theme},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {182--200},
year = {2011},
volume = {390},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a6/}
}
Thierry Champion; Luigi De Pascale. The Monge problem in $\mathbb R^d$: Variations on a theme. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 182-200. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a6/
[1] N. Ahmad, H. K. Kim, R. McCann, Extremal doubly stochastic measures and optimal transportation, Preprint, temporarily available on http://www.math.toronto.edu/mccann/
[2] L. Ambrosio, “Lecture Notes on Optimal Transportation Problems”, Mathematical aspects of evolving interfaces (Funchal, 2000), Lecture Notes Math., 1812, Springer, Berlin, 2003, 1–52 | DOI | MR | Zbl
[3] L. Ambrosio, B. Kirchheim, A. Pratelli, “Existence of optimal transport maps for crystalline norms”, Duke Math. J., 125:2 (2004), 207–241 | DOI | MR | Zbl
[4] L. Ambrosio, A. Pratelli, “Existence and stability results in the $L^1$ theory of optimal transportation”, Optimal transportation and applications (Martina Franca, 2001), Lecture Notes Math., 1813, Springer, Berlin, 123–160 | DOI | MR | Zbl
[5] G. Anzellotti, S. Baldo, “Asymptotic development by $\Gamma$-convergence”, Appl. Math. Optim., 27:2 (1993), 105–123 | DOI | MR | Zbl
[6] H. Attouch, “Viscosity solutions of minimization problems”, SIAM J. Optim., 6:3 (1996), 769–806 | DOI | MR | Zbl
[7] L. A. Caffarelli, M. Feldman, R. J. McCann, “Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs”, J. Amer. Math. Soc., 15:1 (2002), 1–26 | DOI | MR | Zbl
[8] L. Caravenna, “A partial proof of Sudakov theorem via disintegration of measures”, Mathematische Zeitschrift (to appear); Preprint, SISSA, 2008 available at http://cvgmt.sns.it
[9] T. Champion, L. De Pascale, “The Monge problem for strictly convex norms in $\mathbb R^d$”, J. Europ. Math. Soc., 12:6 (2010), 1355–1369 | DOI | MR | Zbl
[10] T. Champion, L. De Pascale, “The Monge problem in $\mathbb R^d$”, Duke Math. J. (to appear) temporarily available on http://cvgmt.sns.it
[11] T. Champion, L. De Pascale, P. Juutinen, “The $\infty$-Wasserstein distance: local solutions and existence of optimal transport maps”, SIAM J. of Math. Anal., 40:1 (2008), 1–20 | DOI | MR | Zbl
[12] L. C. Evans, W. Gangbo, Differential Equations Methods for the Monge–Kantorovich Mass Transfer Problem, Mem. Amer. Math. Soc., 137, 1999 | MR
[13] L. V. Kantorovich, “On the translocation of masses”, C. R. Dokl. Acad. Sci. URSS, 37 (1942), 199–201 | MR
[14] L. V. Kantorovich, “On a problem of Monge”, Uspekhi Mat. Nauk, 3:2 (1948), 225–226 (in Russian)
[15] G. Monge, Mémoire sur la théorie des Déblais et des Remblais, Histoire de l'Académie des Sciences de Paris, 1781
[16] A. Pratelli, “On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation”, Ann. Inst. H. Poincaré Probab. Statist., 43:1 (2007), 1–13 | DOI | MR | Zbl
[17] A. Pratelli, “On the sufficiency of c-cyclical monotonicity for optimality of transport plans”, Math. Z., 258:3 (2008), 677–690 | DOI | MR | Zbl
[18] F. Santambrogio, “Absolute continuity and summability of optimal transport densities: simpler proofs and new estimates”, Calc. Var. Partial Differential Equations, 36:3 (2009), 343–354 | DOI | MR | Zbl
[19] V. N. Sudakov, Geometric problems in the theory of infinite-dimensional probability distributions, Cover to cover translation of Trudy Mat. Inst. Steklov, 141 (1976), Proc. Steklov Inst. Math., 141, 1979, 178 pp. | MR | MR | Zbl
[20] N. S. Trudinger, X. J. Wang, “On the Monge mass transfer problem”, Calc. Var. Partial Differential Equations, 13:1 (2001), 19–31 | DOI | MR | Zbl
[21] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, 2003 | MR | Zbl
[22] C. Villani, Optimal Transport. Old and New, Grundlehren der mathematischen Wissenschaften, 338, Springer, Berlin–Heidelberg, 2008 | MR