A description of transport cost for signed measures
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 147-181

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we develop the analysis of [3] about the extension of the optimal transport framework to the space of real measures. The main motivation comes from the study of nonpositive solutions to some evolution PDEs. Although a canonical optimal transport distance does not seem to be available, we may describe the cost for transporting signed measures in various ways and with interesting properties.
@article{ZNSL_2011_390_a5,
     author = {E. Mainini},
     title = {A description of transport cost for signed measures},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--181},
     publisher = {mathdoc},
     volume = {390},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a5/}
}
TY  - JOUR
AU  - E. Mainini
TI  - A description of transport cost for signed measures
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 147
EP  - 181
VL  - 390
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a5/
LA  - en
ID  - ZNSL_2011_390_a5
ER  - 
%0 Journal Article
%A E. Mainini
%T A description of transport cost for signed measures
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 147-181
%V 390
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a5/
%G en
%F ZNSL_2011_390_a5
E. Mainini. A description of transport cost for signed measures. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 147-181. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a5/