A description of transport cost for signed measures
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 147-181 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we develop the analysis of [3] about the extension of the optimal transport framework to the space of real measures. The main motivation comes from the study of nonpositive solutions to some evolution PDEs. Although a canonical optimal transport distance does not seem to be available, we may describe the cost for transporting signed measures in various ways and with interesting properties.
@article{ZNSL_2011_390_a5,
     author = {E. Mainini},
     title = {A description of transport cost for signed measures},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--181},
     year = {2011},
     volume = {390},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a5/}
}
TY  - JOUR
AU  - E. Mainini
TI  - A description of transport cost for signed measures
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 147
EP  - 181
VL  - 390
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a5/
LA  - en
ID  - ZNSL_2011_390_a5
ER  - 
%0 Journal Article
%A E. Mainini
%T A description of transport cost for signed measures
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 147-181
%V 390
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a5/
%G en
%F ZNSL_2011_390_a5
E. Mainini. A description of transport cost for signed measures. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 147-181. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a5/

[1] F. J. Almgren, J. Taylor, L. Wang, “Curvature-driven flows: a variational approach”, SIAM J. Control Optim., 31:2 (1993), 387–438 | DOI | MR | Zbl

[2] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the spaces of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005 | MR | Zbl

[3] L. Ambrosio, E. Mainini, S. Serfaty, “Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28:2 (2011), 217–246 | DOI | MR | Zbl

[4] L. Ambrosio, S. Serfaty, “A gradient flow approach to an evolution problem arising in superconductivity”, Comm. Pure Appl. Math., 61:11 (2008), 1495–1539 | DOI | MR | Zbl

[5] V. I. Bogachev, Measure Theory, 2 vols., Springer-Verlag, Berlin, 2007 | MR | Zbl

[6] Y. Brenier, “Polar factorization and monotone rearrangement of vector-valued functions”, Comm. Pure Appl. Math., 44 (1991), 375–417 | DOI | MR | Zbl

[7] L. A. Caffarelli, R. J. McCann, “Free boundaries in optimal transport and Monge–Ampère obstacle problems”, Ann. of Math. (2), 171:2 (2010), 673–730 | DOI | MR | Zbl

[8] J. A. Carrillo, R. J. McCann, C. Villani, “Contractions in the 2-Wasserstein length space and thermalization of granular media”, Arch. Ration. Mech. Anal., 179:2 (2006), 217–263 | DOI | MR | Zbl

[9] J. S. Chapman, J. Rubinstein, M. Schatzman, “A mean-field model for superconducting vortices”, Eur. J. Appl. Math., 7:2 (1996), 97–111 | DOI | MR | Zbl

[10] E. De Giorgi, “New problems on minimizing movements”, Boundary Value Problems for PDE and Applications, eds. C. Baiocchi, J. L. Lions, Masson, 1993, 81–98 | MR | Zbl

[11] W. E, “Dynamics of vortex-liquids in Ginzburg–Landau theories with applications to superconductivity”, Phys. Rev. B, 50:3 (1994), 1126–1135

[12] A. Figalli, “The Optimal Partial Transport Problem”, Arch. Ration. Mech. Anal., 195:2 (2010), 533–560 | DOI | MR | Zbl

[13] W. Gangbo, R. McCann, “The geometry of optimal transport”, Acta Math., 177 (1996), 113–161 | DOI | MR | Zbl

[14] R. Jordan, D. Kinderlehrer, F. Otto, “The variational formulation of the Fokker–Planck equation”, SIAM J. Math. Anal., 29 (1998), 1–17 | DOI | MR | Zbl

[15] L. V. Kantorovich, “On the transfer of masses”, Dokl. Akad. Nauk. SSSR, 37 (1942), 227–229

[16] L. V. Kantorovich, “On a problem of Monge”, Uspekhi Mat. Nauk, 3:2 (1948), 225–226

[17] E. Mainini, “A global uniqueness result for an evolution problem arising in superconductivity”, Boll. Unione Mat. Ital. (9), 2:2 (2009), 509–528 | MR | Zbl

[18] E. Mainini, “Well-posedness for a mean field model of Ginzburg–Landau vortices with opposite degrees”, NoDEA Nonlinear Differential Equations Appl. (to appear) | MR

[19] F. Otto, “The geometry of dissipative evolution equations: the porous-medium equation”, Comm. PDE, 26 (2001), 101–174 | DOI | MR | Zbl

[20] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003 | MR | Zbl

[21] C. Villani, Optimal transport, old and new, Springer-Verlag, 2008 | MR

[22] G. Wolanski, “Limit Theorems for Optimal Mass Transportation”, Calc. Var PDE (to appear)