A presentation of the average distance minimizing problem
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 117-146
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We talk about the following minimization problem 
$$
\min F(\Sigma):=\int_\Omega d(x,\Sigma)\,\mathrm d\mu(x),
$$
where $\Omega$ is an open subset of $\mathbb R^2$, $\mu$ is a probability measure and where the minimum is taken over all the sets $\Sigma\subset\overline\Omega$ such that $\Sigma$ is compact, connected, and $\mathcal H^1(\Sigma)\leq\alpha_0$ for a given positive constant $\alpha_0$.
			
            
            
            
          
        
      @article{ZNSL_2011_390_a4,
     author = {A. Lemenant},
     title = {A presentation of the average distance minimizing problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {117--146},
     publisher = {mathdoc},
     volume = {390},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a4/}
}
                      
                      
                    A. Lemenant. A presentation of the average distance minimizing problem. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 117-146. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a4/