A presentation of the average distance minimizing problem
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 117-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We talk about the following minimization problem $$ \min F(\Sigma):=\int_\Omega d(x,\Sigma)\,\mathrm d\mu(x), $$ where $\Omega$ is an open subset of $\mathbb R^2$, $\mu$ is a probability measure and where the minimum is taken over all the sets $\Sigma\subset\overline\Omega$ such that $\Sigma$ is compact, connected, and $\mathcal H^1(\Sigma)\leq\alpha_0$ for a given positive constant $\alpha_0$.
@article{ZNSL_2011_390_a4,
     author = {A. Lemenant},
     title = {A presentation of the average distance minimizing problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {117--146},
     year = {2011},
     volume = {390},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a4/}
}
TY  - JOUR
AU  - A. Lemenant
TI  - A presentation of the average distance minimizing problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 117
EP  - 146
VL  - 390
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a4/
LA  - en
ID  - ZNSL_2011_390_a4
ER  - 
%0 Journal Article
%A A. Lemenant
%T A presentation of the average distance minimizing problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 117-146
%V 390
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a4/
%G en
%F ZNSL_2011_390_a4
A. Lemenant. A presentation of the average distance minimizing problem. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 117-146. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a4/

[1] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 2000 | MR

[2] L. Ambrosio, P. Tilli, Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its Applications, 25, Oxford University Press, Oxford, 2004 | MR | Zbl

[3] D. Bucur, I. Fragalà, J. Lamboley, “Optimal convex shapes for concave functionals”, ESAIM COCV (to appear)

[4] G. Buttazzo, E. Mainini, E. Stepanov, “Stationary configurations for the average distance functional and related problems”, Control Cybernet., 38:4A (2009), 1107–1130 | MR | Zbl

[5] G. Buttazzo, E. Oudet, E. Stepanov, “Optimal transportation problems with free Dirichlet regions”, Variational methods for discontinuous structures, Progr. Nonlinear Differential Equations Appl., 51, Birkhäuser, Basel, 2002, 41–65 | MR | Zbl

[6] G. Buttazzo, A. Pratelli, S. Solimini, E. Stepanov, Optimal urban networks via mass transportation, Lecture Notes in Mathematics, 1961, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl

[7] G. Buttazzo, F. Santambrogio, “Asymptotical compliance optimization for connected networks”, Netw. Heterog. Media, 2:4 (2007), 761–777 | DOI | MR | Zbl

[8] G. Buttazzo, E. Stepanov, “Optimal transportation networks as free Dirichlet regions for the Monge–Kantorovich problem”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2:4 (2003), 631–678 | MR | Zbl

[9] G. David, S. Semmes, Analysis of and on uniformly rectifiable sets, Mathematical Surveys and Monographs, 38, Amer. Math. Soc., Providence, RI, 1993 | DOI | MR | Zbl

[10] K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, 85, Cambridge University Press, Cambridge, 1986 | MR

[11] S. Jaffard, “Formalisme multifractal pour les fonctions”, C. R. Acad. Sci. Paris Sér. I Math., 317:8 (1993), 745–750 | MR | Zbl

[12] S. Jaffard, “Old friends revisited: the multifractal nature of some classical functions”, J. Fourier Anal. Appl., 3:1 (1997), 1–22 | DOI | MR | Zbl

[13] S. Jaffard, “Multifractal functions: recent advances and open problems”, Bull. Soc. Roy. Sci. Liège, 73:2–3 (2004), 129–153 | MR | Zbl

[14] A. Lemenant, “About the regularity of average distance minimizers in $\mathbb R^2$”, J. Convex Anal. (to appear) | MR

[15] A. Lemenant, E. Mainini, “On convex sets that minimize the average distance”, ESAIM COCV (to appear)

[16] F. Morgan, “$(\mathbf M\epsilon,\delta)$-minimal curve regularity”, Proc. Amer. Math. Soc., 120:3 (1994), 677–686 | MR | Zbl

[17] S. Mosconi, P. Tilli, “$\Gamma$-convergence for the irrigation problem”, J. Convex Anal., 12:1 (2005), 145–158 | MR | Zbl

[18] E. Paolini, E. Stepanov, “Qualitative properties of maximum distance minimizers and average distance minimizers in $\mathbb R^n$”, J. Math. Sci. (N.Y.), 122:3 (2004), 3290–3309 | DOI | MR | Zbl

[19] F. Santambrogio, P. Tilli, “Blow-up of optimal sets in the irrigation problem”, J. Geom. Anal., 15:2 (2005), 343–362 | DOI | MR | Zbl

[20] F. Stepanov, “Partial geometric regularity of some optimal connected transportation networks”, J. Math. Sci. (N.Y.), 132:4 (2006), 522–552 | DOI | MR

[21] P. Tilli, “Some explicit examples of minimizers for the irrigation problem”, J. Convex Anal., 17:2 (2010), 583–595 | MR | Zbl