Free gradient discontinuity and image inpainting
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 92-116

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and study a formulation of inpainting problem for 2-dimensional images which are locally damaged. This formulation is based on the regularization of the solution of a second order variational problem with Dirichlet boundary condition. A variational approximation algorithm is proposed.
@article{ZNSL_2011_390_a3,
     author = {M. Carriero and A. Leaci and F. Tomarelli},
     title = {Free gradient discontinuity and image inpainting},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {92--116},
     publisher = {mathdoc},
     volume = {390},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a3/}
}
TY  - JOUR
AU  - M. Carriero
AU  - A. Leaci
AU  - F. Tomarelli
TI  - Free gradient discontinuity and image inpainting
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 92
EP  - 116
VL  - 390
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a3/
LA  - en
ID  - ZNSL_2011_390_a3
ER  - 
%0 Journal Article
%A M. Carriero
%A A. Leaci
%A F. Tomarelli
%T Free gradient discontinuity and image inpainting
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 92-116
%V 390
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a3/
%G en
%F ZNSL_2011_390_a3
M. Carriero; A. Leaci; F. Tomarelli. Free gradient discontinuity and image inpainting. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 92-116. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a3/